W0. Introduction

(W0.1) Give a general description of and introduction to your organization.

Water is a vital component required in the Sibanye-Stillwater operations. The Group actively manages water risks and opportunities through various comprehensive structure and frameworks, which we are pleased to present in this report, which is our first CDP water disclosure.

Sibanye-Stillwater is an independent, global, precious metals mining company producing a unique mix of metals that includes platinum group metals (PGMs) and gold. The mining house is a top tier gold producer, ranking 3rd globally on a gold-equivalent basis, and is also one of the world’s largest primary producer of platinum and rhodium. The Group is also a leading global recycler and processor of spent PGM catalytic converter materials, and produces iridium, ruthenium, chrome, copper and nickel as by-products. Sibanye-Stillwater also recently entered the battery metals industry by investing in a lithium hydroxide project in Finland in 2021.

Prolonged droughts and water scarcity, especially at Sibanye-Stillwater’s South African PGM operations, have been identified as key climate change-related water risks that threaten the long-term sustainability of the Group. Sibanye-Stillwater seeks to proactively reduce our dependence on water resources through water security and water independence strategies. Water scarcity and water quality considerations are incorporated into the Group’s environmental planning processes, from early stage feasibility to post mining and closure, to ensure the sustainability of our operations, host communities and ecosystems.

Sibanye-Stillwater has aligned its environmental priority of “improving life through the sustainable use of our natural resources, driving environmental consciousness and continuous improvement, with measured transition to a carbon neutral future” with the Group’s environmental, social and governance (ESG) strategy. We create and share value to improve lives through our business activities. In so doing, we invest in and optimise the responsible use of our capital inputs, to ensure sustained value creation in the long term. Furthermore, the Sibanye-Stillwater CARES values underpin our strategy, how we conduct business and interact with stakeholders. In living these values, we show that we care about safe production, our stakeholders, our environment, our company and our future.

United States PGM segment

The East Boulder and the Stillwater (including Blitz) mines are located in Montana. The Columbus Metallurgical Complex, which smelts the material mined to produce PGM-rich filter cake, also recycles PGMs from auto catalysts. The US PGM operations primarily produce palladium and platinum (78% palladium and 22% platinum). The PGM-bearing ore mined is processed and smelted to produce a PGM-rich filter cake. A third party refines the filter cake.

Southern Africa PGM segment

The Kroondal (95.3% stake), Marikana operation (95.3% stake) and Rustenburg Operations are located on the western limb of the Bushveld Complex in South Africa, while the Mimosa Operation (50% joint venture) is situated on the southern portion of the Great Dyke in Zimbabwe. Platinum Mile (91.7% stake in 2020 and 100% stake as of July 2021) is a retreatment facility, which reprocesses arisings from Rustenburg. The primary PGMs produced at the operations in South Africa and Zimbabwe are platinum, palladium, rhodium and gold. The PGM-bearing ore is processed to produce PGMs-in-concentrate, which is processed and refined by third parties.

South Africa gold segment

The Driefontein, Kloof and Cooke surface operations and associated processing facilities are located on the West Rand of the Witwatersrand Basin, while Beatrix is in the southern Free State goldfields. Sibanye-Stillwater also has an interest in surface tailings retreatment facilities located from the East Rand to the West Rand through a 50.1% stake in DRDGOLD Limited.

Sibanye-Stillwater mines, extracts and processes gold-bearing ore at its South African gold operations to produce a beneficiated product, doré, which is then refined at Rand Refinery Pty Ltd into gold bars with a purity of at least 99.5% in accordance with the London Bullion Market Association’s standards of Good Delivery. Sibanye-Stillwater holds a 33.1% interest in Rand Refinery, one of the largest refiners of gold globally, and the largest in Africa. Rand Refinery markets and sells refined gold on international markets to customers around the world. DRDGOLD holds an 11.3% share in Rand Refinery.

Sibanye-Stillwater has its primary listing on the JSE, South Africa, where it is included in the FTSE/JSE Responsible Investment Index. The company is also listed on the NYSE, with its shares quoted as American Depositary Receipts.

W-MM0.1a

(W-MM0.1a) Which activities in the metals and mining sector does your organization engage in?

<table>
<thead>
<tr>
<th>Activity</th>
<th>Details of activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mining</td>
<td>Gold</td>
</tr>
<tr>
<td></td>
<td>Platinum group metals</td>
</tr>
</tbody>
</table>

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2020</td>
<td>December 31 2020</td>
</tr>
</tbody>
</table>
W0.3

(W0.3) Select the countries/areas for which you will be supplying data.
South Africa
United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.
ZAR

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
No

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Sufficient amounts of good quality freshwater available for use</th>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital</td>
<td>Vital</td>
<td>Vital</td>
<td>Direct operations: Sibanye-Stillwater makes use of freshwater in various processes at our operations. We have access to municipal water at our SA operations and our objective is to reduce reliance on this system and avail the water to others in our communities. Primary uses include drilling, slurryng, ore processing, cooling of equipment and sanitation purposes. Without sufficient volumes of good quality freshwater, our production volumes may be affected, for example as a result of damage to cooling facilities. While many of our processes do not require highest quality water, we need to top-up with fresh water due to a shortage of available process or brackish water. Good quality freshwater is absolutely critical for maintaining hygiene amongst our staff and communities supplied with water through our networks. This is especially important to assist in combating the spread of viruses such as COVID-19. Without access to proper quality freshwater, the health and safety of our staff is also compromised. Hence, freshwater supplies are vital to our operations. Indirect operations: Water is primarily used by our suppliers to produce products such as timber, steel and electricity. Further to this, surrounding communities relies on freshwater for health and sanitation purposes. - Importance rating: Our mines cannot operate without the resources described above. In particular, many of our employees come from surrounding communities to whom the supply of good quality freshwater is vital. Future dependency: It is expected that our direct use of good quality freshwater will decrease as we implement water management practices and targets along with increased use of recycled water. E.g, we will be deploying additional water treatment facilities to improve water independence. The requirement in our value chain is likely to also decrease as it can be reasonably expected that our suppliers would also reduce their water requirements.</td>
</tr>
</tbody>
</table>

| Sufficient amounts of recycled, brackish and/or produced water available for use | Vital | Not very important | Direct operations: Recycled water is primarily used within our operations to replace the use of freshwater, wherever possible. Uses thereof include: drilling, slurryng, ore processing, cooling of equipment and hydraulic tailings re-mining. - Importance rating: Access to recycled or brackish water is vital to our operations because the majority of our operations are located in water stressed areas. We have access to municipal water at our SA operations and our objective is to reduce reliance on this system and avail the water to others in our communities. We share the water resources with our host communities, hence any opportunity to reduce freshwater withdrawals is considered vital. Indirect operations: Recycled/brackish/produced water is not very important to our value chain members, such as suppliers and host communities, as they do not make significant use of recycled water. Future dependency: Our direct use of recycled water is likely to increase as we reduce our dependency on freshwater volumes. Our value chain partners are, at this stage, unlikely to require recycled/brackish/produced water. Hence, their dependencies on these water sources are unlikely to change. |

W1.2
(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>Percentage of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water withdrawals at 100% of their operations. Sibanye-Stillwater requires this information to ensure that the withdrawal volumes fall within any water use licence boundaries. Monitoring withdrawals also assists us to measure performance against water targets. Therefore, this aspect is relevant. Frequency and method: Water withdrawal volumes are monitored by water meters on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
<tr>
<td>Water withdrawals – volumes by source</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water withdrawals by source at 100% of their operations. Sibanye-Stillwater requires this information to ensure that the withdrawal volumes fall within any water use licence boundaries. Monitoring withdrawals also assists us to measure performance against water targets and goals. For example, we are aiming for water independence from third-party suppliers in South Africa. Therefore, monitoring this aspect is relevant. Frequency and method: Water withdrawal volumes are monitored by water meters on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
<tr>
<td>Entrained water associated with your metals & mining sector activities – total volumes (only metals and mining sector)</td>
<td>Not relevant</td>
</tr>
<tr>
<td>Relevance: The ore mined by Sibanye-Stillwater’s operations does not contain large amounts of moisture. The entrained water in ore processed by the operations is considered negligible and hence this water aspect is not relevant. Future: This aspect is not expected to become relevant in the future as Sibanye-Stillwater plans to continue to mine similar ore bodies.</td>
<td></td>
</tr>
<tr>
<td>Produced water associated with your oil & gas sector activities – total volumes (only oil and gas sector)</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water withdrawal quality at 100% of their operations. Sibanye-Stillwater requires this information to ensure that the withdrawn water can be used in the respective mining and processing activities. Water is treated, when required, prior to use in the operations. Therefore, this aspect is relevant. Frequency and method: Water withdrawal quality is monitored by taking samples which are then analysed. These samples are taken on a weekly basis. Surface water and groundwater sources are measured monthly.</td>
<td></td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water discharge volumes at 100% of their operations. Sibanye-Stillwater monitors the discharge volumes to ensure that these comply, or exceed compliance, with any water use licence boundaries. For example, the US operations are bound by the Good Neighbor agreement, which requires water management and treatment to standards that are stricter than the regulatory requirements. Monitoring discharges assists us to ensure correct water balances and to measure performance, for example related to recycling-use activities. Therefore, this aspect is relevant. Frequency and method: Water discharge volumes are monitored by water meters on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water discharge volumes by destination at 100% of their operations. Sibanye-Stillwater monitors the discharge volumes by destination to ensure that sufficient treatment of the discharged water is maintained or exceeds the licensing boundaries and regulations. For example, the US operations are bound by the Good Neighbor agreement, which requires water management and treatment to standards that are stricter than the regulatory requirements. Therefore, this aspect is relevant. Frequency and method: Water discharge volumes are monitored by water meters on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water discharge volumes by treatment method at 100% of their operations. Sibanye’s Kloof operation is the only mine that discharges water before discharging. All the other operations further treat the water before discharging. Notably, the US operations are also bound by the Good Neighbor agreement, which requires water management and treatment to standards that are stricter than the regulatory requirements. Therefore, this aspect is relevant. Frequency and method: Water discharge volumes are monitored by water meters on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
<tr>
<td>Water discharge quality – by standard effluent parameters</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water discharge quality by standard effluent parameters at 100% of their operations. Sibanye-Stillwater is required to ensure that the discharged water qualities are compliant with, or exceed compliance with, the respective licensing boundaries and regulations. For example, the US operations are also bound by the Good Neighbor agreement, which requires water management and treatment to standards that are stricter than the regulatory requirements. Therefore, this aspect is relevant. Frequency and method: Water discharge quality is monitored by taking samples which are then analysed. These samples are taken on a weekly basis.</td>
<td></td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water discharge quality by temperature at 100% of their operations. Sibanye-Stillwater is required to ensure that the discharged water temperatures are compliant with, or exceed, the respective licensing boundaries and regulations. For example, the US operations are also bound by the Good Neighbor agreement, which requires water management and treatment to standards that are stricter than the regulatory requirements. Therefore, this aspect is relevant. Frequency and method: Water discharge quality is monitored by taking samples which are then analysed. These samples are taken on a weekly basis.</td>
<td></td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water consumption volumes at 100% of their operations. Water consumption can be a performance metric used to determine whether operations are running as efficiently as possible, in terms of water use and management. Therefore, this aspect is relevant. Frequency and method: Water consumption volumes are monitored by water meters on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100%</td>
</tr>
<tr>
<td>Relevance: Sibanye-Stillwater monitors the water recycled/reused volumes at 100% of their operations. Water recycling initiatives are an important component of Sibanye-Stillwater’s goal to reduce dependence on water withdrawals from third parties, particularly at its South African operations. Monitoring recycling assists us to track progress against this goal. Therefore, this aspect is relevant. Frequency and method: Water recycled volumes are monitored by water meters and calculations on a daily basis. Aggregation of the water volumes occurs on a monthly and yearly basis.</td>
<td></td>
</tr>
</tbody>
</table>

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>125221 About the same</td>
<td>Change from previous year: Our water withdrawals have increased by 1% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change less than 10%. Future volumes: we expect future demand for fresh water volumes to remain about the same due to our ongoing and future water efficiency projects.</td>
</tr>
<tr>
<td>Total discharges</td>
<td>77147 About the same</td>
<td>Change from previous year: Our water discharges increased by 2% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change less than 10%. Future volumes: we expect future discharge volumes to remain about the same due to our stable water withdrawal needs and ongoing recycling initiatives.</td>
</tr>
<tr>
<td>Total consumption</td>
<td>48591 About the same</td>
<td>Change from previous year: Our water consumption decreased by 3% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change less than 10%. Future volumes: we expect future consumption volumes to remain about the same due to our stable water withdrawal needs and ongoing recycling initiatives. Our consumption figures do not balance according to the CDP definition of Consumption = Withdrawals - Discharge. This is due to the accounting of water consumption at our US operations. At our South African operations, the CDP definition is used. At the US operations, water consumption is defined as water added to concentrator plus potable water purchased.</td>
</tr>
</tbody>
</table>
(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>100%</td>
<td>About the same</td>
<td>WRI Aqueduct</td>
<td>As part of Sibanye Stillwater’s risk management processes, water risk management is incorporated. Both our South African and US operations have unique water related risks. South Africa in particular has a semi-arid climate implying limited water resources. As part of our water risk management, we identify the water stress in the areas we operate. The WRI Aqueduct Water Risk Atlas tool is used to identify whether each of our operations are in a water stress area. How the WRI Aqueduct Water Risk Atlas tool was applied to evaluate whether the water has been withdrawn from stressed areas. The tool was applied to each of our operation’s location to evaluate whether that operation’s water withdrawals are from a water stressed area. According to the Aqueduct tool, all of our operations are evaluated to be in a water stress area.</td>
</tr>
</tbody>
</table>

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>69</td>
<td>Much lower</td>
<td>Relevance: Sibanye-Stillwater withdraws water from fresh surface water sources. Change from previous reporting year: A reduction in withdrawal of 79% as a result of the unavailability of infrastructure to withdraw from Buffelspoort Irrigation canal during 2020. Sibanye defines ±40% change as much lower/much higher. Future volumes: we expect fresh water withdrawal volumes to reduce due to the implementation of our water efficiency measures and water security strategy.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Relevance: Sibanye-Stillwater does not withdraw water from a brackish surface water source. Therefore, this source is not relevant</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Relevant</td>
<td>10512</td>
<td>About the same</td>
<td>Relevance: Sibanye-Stillwater withdraws water from groundwater water sources. Change from previous reporting year: Our ground water withdrawals have increased by 1% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change less than 10%. Future volumes: We expect future ground water volumes to remain about the same due to sustained availability of these sources.</td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Relevance: Sibanye-Stillwater does not withdraw water from a non-renewable water source. Therefore, this source is not relevant</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Relevance: Sibanye-Stillwater does not withdraw water from an entrained water source. Therefore, this source is not relevant</td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>22640</td>
<td>About the same</td>
<td>Relevance: Sibanye-Stillwater withdraws water from third party water sources. Change from previous reporting year: Our water purchases have increased by 3% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change less than 10%. However, the reason for the increase was as a result of Marikana Operations being added to the network in 2019, without it, comparing the total year-to-year, we have reduced consumption by 12%. Future volumes: we expect water purchased volumes to reduce because of implementation our water independence and water security strategy.</td>
</tr>
</tbody>
</table>

Future volumes: we expect water purchased volumes to reduce because of implementation our water independence and water security strategy.

(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Destination</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant</td>
<td>67269</td>
<td>About the same</td>
<td>Relevance: Sibanye-Stillwater discharges water to fresh surface water destinations. Change from previous reporting year: Our discharge to fresh surface water increased by 4% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change less than 10%.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Relevant</td>
<td>6361</td>
<td>About the same</td>
<td>Relevance: Sibanye-Stillwater discharges water to brackish surface water destinations. Change from previous reporting year: Our discharge of brackish surface water at Cooke 1 Shaft reduced by 2% when compared to our previous financial year. Hence, levels remained about the same as the previous year. Sibanye defines “about the same” as any change +/-10%.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Relevant</td>
<td>3517</td>
<td>Lower</td>
<td>Relevance: Sibanye-Stillwater discharges water to groundwater destinations. Change from previous reporting year: 12% decrease of water discharged to Groundwater sources at our US operations. Sibanye defines a ±10% to ±40% change as lower/higher.</td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Relevance: Sibanye does not discharge water to a third-party destination. Therefore, this destination is not relevant.</td>
</tr>
</tbody>
</table>
Within your direct operations, indicate the highest level(s) to which you treat your discharge.

<table>
<thead>
<tr>
<th>Relevance of treatment level to discharge</th>
<th>Volume (megaliters/year)</th>
<th>Comparison of treated volume with previous reporting year</th>
<th>% of your sites/facilities/operations this volume applies to</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tertiary treatment</td>
<td>Relevant</td>
<td>7310</td>
<td>About the same</td>
<td>Sibanye-Stillwater discharges water that went through at least three stages of treatment at the Marikana, Beatrix, Kloof and Driefontein operations in South Africa. This volume increased by 3% in the reporting year.</td>
</tr>
<tr>
<td>Secondary treatment</td>
<td>Relevant</td>
<td>5832</td>
<td>About the same</td>
<td>Sibanye-Stillwater discharges water that went through two stages of treatment at Kloof, Ezelwini and Cooke operations in South Africa. The volume decreased by 5% in the reporting year.</td>
</tr>
<tr>
<td>Primary treatment only</td>
<td>Relevant</td>
<td>30072</td>
<td>About the same</td>
<td>Sibanye-Stillwater’s Kloof and Driefontein operations in South Africa, as well as both US operations, discharge water that went through one treatment step (Disinfection). This volume decreased by 5% in the reporting year.</td>
</tr>
<tr>
<td>Discharge to the natural environment</td>
<td>Relevant</td>
<td>11286</td>
<td>About the same</td>
<td>Sibanye-Stillwater does not discharge water that has not been treated to a third party. Therefore, this level is not relevant.</td>
</tr>
<tr>
<td>Discharge to a third party without</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>Sibanye-Stillwater does not discharge water that has been treated to other treatment levels. Therefore, this level is not relevant.</td>
</tr>
<tr>
<td>treatment</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
</tbody>
</table>

W-MM1.3

Do you calculate water intensity information for your metals and mining activities?

Yes

W-MM1.3a

For your top 5 products by revenue, provide the following intensity information associated with your metals and mining activities.

<table>
<thead>
<tr>
<th>Product</th>
<th>Numerator: Water use</th>
<th>Denominator: Water use</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>Total water use</td>
<td>Other, please specify (tonne treated)</td>
<td>Lower</td>
<td>This intensity relates to the water use intensity at our South African Gold operations. Change from previous year: The intensity decreased by 13% from 0.97L/tonne treated in FY19 to 0.83L/tonne treated in FY20. Sibanye-Stillwater defines a change between ±10% to ±40% to be lower/higher. The decrease in intensity is a result of our drive to reduce dependency on external water suppliers. As a result, there was a significant reduction in purchased water volumes at our gold operations. How the metric is used internally: This intensity is used to understand and track the water use intensity at our operations. This metric is an important indicator in our water conservation efforts. Anticipated future anticipated trends: Our total water use/tone treated intensity is expected to reduce as the efficiencies of our operations increase due to water conservation efforts. Strategy to reduce water intensity: Sibanye-Stillwater has published a WCWDM/Water Stewardship position statement which outlines our strategy for water conservation and demand management. This strategy covers five objectives including minimising water loss or waste and ensuring water security. Within these objectives, there are several initiatives which will reduce our water use intensity. Some examples of these initiatives include the sinking of boreholes to increase water security, water use efficiency measures, proper tailings management for water recycling and water use optimisation measures such as water treatment and recycling plants.</td>
</tr>
<tr>
<td>PGM</td>
<td>Total water use</td>
<td>Other, please specify (tonne treated)</td>
<td>Higher</td>
<td>This intensity relates to the water use intensity at our South African PGM operations. Change from previous year: The intensity increased by 22% from 0.74L/tonne treated in FY19 to 0.9L/tonne treated in FY20. Sibanye-Stillwater defines a change between ±10% to ±40% to be lower/higher. This increase is primarily due to the acquisition of the Marikana operations which are heavily reliant on purchased water and supplies various communities located at the operations. How the metric is used internally: This intensity is used to understand and track the water use intensity at our operations. This metric is an important indicator in our water conservation efforts. Anticipated future anticipated trends: Our total water use/tone treated intensity is expected to reduce as the efficiencies of our operations increase due to water conservation efforts. Strategy to reduce water intensity: Sibanye-Stillwater has published a WCWDM/Water Stewardship position statement which outlines our strategy for water conservation and demand management. This strategy covers five objectives including minimising water loss or waste and ensuring water security. Within these objectives, there are several initiatives which will reduce our water use intensity. Some examples of these initiatives include the sinking of boreholes to increase water security, water use efficiency measures, proper tailings management for water recycling and water use optimisation measures such as water treatment and recycling plants.</td>
</tr>
<tr>
<td>PGM</td>
<td>Total water use</td>
<td>Other, please specify (tonne treated)</td>
<td>Much lower</td>
<td>This intensity relates to the water use intensity at our US PGM operations. Change from previous year: The intensity decreased by 67% from 0.63L/tonne treated in FY19 to 0.21L/tonne treated in FY20. Sibanye-Stillwater defines a change of >±40% to be much lower/higher. The significant decrease is due to the increase in treated volumes at our US operations combined with a significant reduction in water use at the operations. Water use at our US operations decreased by 61%. How the metric is used internally: This intensity is used to understand and track the water use intensity at our operations. This metric is an important indicator in our water conservation efforts. Anticipated future anticipated trends: Our total water use/tone treated intensity is expected to reduce as the efficiencies of our operations increase due to water conservation efforts. Strategy to reduce water intensity: Sibanye-Stillwater has published a WCWDM/Water Stewardship position statement which outlines our strategy for water conservation and demand management. This strategy covers five objectives, including minimising the impact of our operations on water resources, which is important as our US operations are situated adjacent to headwater mountain streams that have their source in the federally protected Absaroka-Beartooth Wilderness Area. There are several initiatives which will reduce our water use intensity. E.g. the long-range planning for increased water flows as the underground mines expand. Limiting ground water inflows reduces the volume of water requiring treatment in our biologic water treatment facilities, and also decreases volumes of discharged water. In addition, the US PGM operations also entered into an adaptive management plan as part of its Good Neighbor Agreement in 2020. This plan outlines a staged response to water quality parameters with certain criteria triggering various responses that are more stringent than requirements under state and federal law.</td>
</tr>
</tbody>
</table>

W.1.4

Do you engage with your value chain on water-related issues?

Yes, our suppliers
(W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

<table>
<thead>
<tr>
<th>Row 1</th>
<th>% of suppliers by number</th>
<th>76-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of total procurement spend</td>
<td>76-100</td>
</tr>
</tbody>
</table>

Rationale for this coverage
Sibanye-Stillwater has over 3700 suppliers. The South African operations have a supplier portal, Coupa, on which suppliers are requested to provide information on an ongoing basis. Sibanye-Stillwater circulated a questionnaire in 2020 to 100% existing suppliers, requesting them to provide ESG information, including water-specific information. 600 suppliers responded to the 2020 questionnaire. The survey was reissued in 2021 and to date over 940 suppliers have responded. Rationale for the coverage of this engagement: all suppliers have water impacts, resulting in different risks and opportunities which may affect Sibanye-Stillwater’s operations. Thus, all suppliers were targeted in this engagement to ensure that the Group has adequate data with which to mitigate operational risks. In addition, a risk-based approach is also used to prioritise key climate and water engagements. The criteria used for prioritising key supplier engagements is based on assessments of products supplied and of its vulnerability to climate change and water security, supply demand and availability. Sibanye-Stillwater has categorised its suppliers. Strategic suppliers provide services and products that have a high impact on operations, such as reagents and underground support. Without their inputs, production would be seriously hampered and engagement with them is interactive and contracted to minimise any potential risk to our health and safety requirement with a focus on production. Tactical suppliers provide Sibanye-Stillwater with the bulk day-to-day goods and services required for production. How suppliers are incentivized to report: Sibanye-Stillwater highlights the mutual benefit of disclosing ESG information and quantifying any associated risks such as the impacts of water security or shortages. Sibanye-Stillwater can then engage with suppliers accordingly. Engagements are guided by the Stakeholder Engagement Policy. Supplier engagements take place at an operational level and any issues are managed through the supply chain. The focus on the local suppliers is to ensure community participation and both financial and non-financial assistance offered to them if required. Facilitating climate awareness along the value chain may assist these suppliers to prepare for adverse climate impacts, such as water shortages, which will reduce the risk of supply interruptions to the Sibanye facilities.

Impact of the engagement and measures of success
Details of the type of information requested from suppliers: Sibanye-Stillwater’s 2020 questionnaire included a request for suppliers to provide their fresh-water consumption volumes. How the information is used within the company: Sibanye-Stillwater is able to identify key suppliers that may face material water-related risks. Sibanye-Stillwater may subsequently engage with such suppliers to facilitating climate and water awareness, which may assist these suppliers to prepare for adverse climate impacts, such as water shortages. The dual aim of these engagements is to reduce the risk of supply interruptions to the Sibanye-Stillwater facilities. Details of how success is measured: The success of these interactions is measured implicitly by how much they assist Sibanye-Stillwater in identifying supplier-related risks (and opportunities) and in informing our strategy for the future. This engagement has assisted Sibanye-Stillwater in identifying several key supplier related climate change and water-related risks. Company-specific examples of the impact of climate-related supplier engagement according to the measure of success chosen: Notably in 2020, Sibanye-Stillwater has identified the water supply concerns as key operational risks in the South African operations. Sibanye-Stillwater has engaged with the local utility, Rand Water, through various channels including water forums hosted by the utility. Sibanye-Stillwater is accordingly implementing actions to reduce water reliance from this and other external suppliers, in order to reduce water security risks.

Comment

(W1.4b) Provide details of any other water-related supplier engagement activity.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>No other supplier engagements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of engagement</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% of suppliers by number</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>% of total procurement spend</td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

Rationale for the coverage of your engagement
Coverage of engagement: Sibanye-Stillwater’s supplier engagements related to water matters are developing as material matters arise. The engagements via the supplier ESG questionnaire provide a basis for further engagements with key suppliers, where these suppliers may have material water-related risks that could impact the supply of products or services to the Sibanye-Stillwater operations.

Impact of the engagement and measures of success
<Not Applicable>

Comment
<Not Applicable>

(W2.1) Has your organization experienced any detrimental water-related impacts?
No
W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?
No

W3. Procedures

W-MM3.2

(W-MM3.2) By river basin, what number of active and inactive tailings dams are within your control?

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of tailings dams in operation</th>
<th>Number of inactive tailings dams</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa Limpopo</td>
<td>17</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of tailings dams in operation</th>
<th>Number of inactive tailings dams</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa Orange</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Number of tailings dams in operation</th>
<th>Number of inactive tailings dams</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America Mississippi River</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Do you evaluate and classify the tailings dams under your control according to the consequences of their failure to human health and ecosystems?

Row 1

Evaluation of the consequences of tailings dam failure
Yes, we evaluate the consequences of tailings dam failure

Evaluation/Classification guideline(s)
South Africa (SANS) 10286
Other, please specify (Global Industry Standard on Tailings Management (GISTM) and US state of Montana regulations MCA 82-4-376)

Tailings dams have been classified as 'hazardous' or 'highly hazardous'
Yes, tailings dams have been classified as 'hazardous' or 'highly hazardous' (or equivalent)

Please explain
Rationale for choice of selected guidelines: SANS 10286, 1998 is the legislated management guidance document for TSFs in South Africa. This standard contains fundamental objectives, the principles and min. requirements for best practice, all aimed at ensuring that no unavoidable risks, problems and/or legacies are left to future generations. We have committed to the Global Industry Standard for Tailings Management (GISTM, 2020) and are currently upgrading management systems, standards and practices to ensure alignment. In Montana, US regulations MCA 82-4-376 of 2015 are broadly reflective of international best practice in the management of TSFs. These regulations stipulate all TSFs are to be designed using the most advanced practices and technologies available, requiring ample review and approval of design, operation, maintenance and closure by expert engineers ahead of construction. Frequency of evaluation: A stability analysis is conducted by an independent consulting engineer annually. In addition, quarterly 3rd-party reviews are also conducted to monitor facility performance parameters. The min. level or criteria to classify hazard ratings comes from SANS 10286. The standard considers the no. of residents affected, no. of workers affected as well as the value of 3rd party property affected. Sibanye’s operations submit a mine closure and decommissioning report, annual rehab. plans and post-mining impact assessment to the Department of Mineral Resources and Energy.

W-MM3.2b

Provide details for all dams classified as 'hazardous' or 'highly hazardous'.

Tailings dam name/identifier
BTX1 (Beatrix Dormant TSF compartment)

Country/Area & River basin
South Africa
Orange

Latitude
-28.28695
Longitude
26.770411
Hazard classification
High
Guideline(s) used
South Africa SANS 10286
Tailings dam's activity
Inactive
Current tailings storage impoundment volume (Mm3)
32
Planned tailings storage impoundment volume in 5 years (Mm3)
32
Please explain
The BTX1 tailings dam (inactive) is located at Sibanye-Stillwater’s Beatrix operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
BTX2 (Beatrix Active TSF compartment)

Country/Area & River basin
South Africa
Orange

Latitude
-28.273697
Longitude
26.771658
Hazard classification
High
Guideline(s) used
South Africa SANS 10286
Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
24

Planned tailings storage impoundment volume in 5 years (Mm³)
44

Please explain
The BTX2 tailings dam (active) is located at Sibanye-Stillwater’s Beatrix operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>BTX2 (Oryx TSF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Orange</td>
</tr>
</tbody>
</table>

| Latitude | -28.188975 |
| Longitude | 26.703736 |

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam’s activity
Inactive

Current tailings storage impoundment volume (Mm³)
18

Planned tailings storage impoundment volume in 5 years (Mm³)
18

Please explain
The BTX4 tailings dam (inactive) is located at Sibanye-Stillwater’s Beatrix operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Cooke TSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Orange</td>
</tr>
</tbody>
</table>

| Latitude | -26.243452 |
| Longitude | 27.749525 |

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam’s activity
Inactive

Current tailings storage impoundment volume (Mm³)
73

Planned tailings storage impoundment volume in 5 years (Mm³)
73

Please explain
The Cooke TSF tailings dam (inactive) is located at Sibanye-Stillwater’s Cooke operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Driefontein 1 TSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Orange</td>
</tr>
</tbody>
</table>

| Latitude | -28.188975 |
| Longitude | 26.703736 |

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam’s activity
Inactive

Current tailings storage impoundment volume (Mm³)
73

Planned tailings storage impoundment volume in 5 years (Mm³)
73

Please explain
The Driefontein 1 TSF tailings dam (inactive) is located at Sibanye-Stillwater’s Driefontein 1 operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.
Latitude
-26.243452

Longitude
27.749525

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
37

Planned tailings storage impoundment volume in 5 years (Mm3)
47

Please explain:
The Driefontein 1 TSF dam (active) is located at Sibanye-Stillwater's Driefontein operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Driefontein 2 TSF

Country/Area & River basin
South Africa Orange

Latitude
-26.370527

Longitude
27.502658

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
35

Planned tailings storage impoundment volume in 5 years (Mm3)
45

Please explain:
The Driefontein 2 TSF dam (active) is located at Sibanye-Stillwater's Driefontein operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Ezulwini North TSF

Country/Area & River basin
South Africa Orange

Latitude
-26.35345

Longitude
27.725677

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
22

Planned tailings storage impoundment volume in 5 years (Mm3)
33
The Ezulwini North TSF dam (active) is located at Sibanye-Stillwater's Ezulwini operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Ezulwini South TSF (Cooke 4)

Country/Area & River basin

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>-26.381166</td>
<td></td>
</tr>
</tbody>
</table>

Longitude
27.719766

Hazard classification
Medium

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Inactive

Current tailings storage impoundment volume (Mm3)
61

Planned tailings storage impoundment volume in 5 years (Mm3)
61

Please explain
The Ezulwini South TSF (Cooke 4) dam (inactive) is located at Sibanye-Stillwater’s Ezulwini operation in South Africa. This dam has a medium-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Kloof TSF 2

Country/Area & River basin

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>-26.443441</td>
<td></td>
</tr>
</tbody>
</table>

Longitude
27.590844

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
42

Planned tailings storage impoundment volume in 5 years (Mm3)
55

Please explain
The Kloof TSF 2 tailings dam (active) is located at Sibanye-Stillwater’s Kloof operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Leeudoorn TSF

Country/Area & River basin

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>-26.460102</td>
<td></td>
</tr>
</tbody>
</table>

Longitude
27.568002

Please explain
The Leeudoorn TSF tailings dam (inactive) is located at Sibanye-Stillwater’s Leeudoorn operation in South Africa. This dam has a medium-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.
Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
29

Planned tailings storage impoundment volume in 5 years (Mm³)
42

Please explain
The Leeudoorn TSF dam (active) is located at Sibanye-Stillwater's Kloof operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Millsite Complex (38, 39, 40, 41, valley dam)

Country/Area & River basin

Latitude
-26.131744

Longitude
27.701813

Hazard classification
Medium

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
79

Planned tailings storage impoundment volume in 5 years (Mm³)
79

Please explain
The Millsite Complex dam (active) is located at Sibanye-Stillwater's Cooke operation in South Africa. It has a medium-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Baobab 1

Country/Area & River basin

Latitude
-24.3698

Longitude
29.4712

Hazard classification
Medium

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
3

Planned tailings storage impoundment volume in 5 years (Mm³)
11

Please explain
The Baobab 1 dam (active) is located in Limpopo, South Africa. It has a medium-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.
Tailings dam name/identifier
Blue Ridge

Country/Area & River basin

South Africa | Limpopo

Latitude
-25.24845

Longitude
29.574672

Hazard classification
Medium

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
2

Planned tailings storage impoundment volume in 5 years (Mm³)
2

Please explain
The Blue Ridge Operation has been inactive since August 2010, prior to acquisition of Aquarius Platinum by Sibanye-Stillwater, and is in the process of being closed.

Tailings dam name/identifier
Eastern Plats TD1

Country/Area & River basin

South Africa | Limpopo

Latitude
-25.687

Longitude
27.6042

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
14

Planned tailings storage impoundment volume in 5 years (Mm³)
14

Please explain
The Eastern Plats TD1 dam (active) is located at Sibanye-Stillwater's Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GiSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Eastern Plats TD2

Country/Area & River basin

South Africa | Limpopo

Latitude
-25.6872

Longitude
27.5957

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active
Current tailings storage impoundment volume (Mm³)
24

Planned tailings storage impoundment volume in 5 years (Mm³)
39

Please explain
The Eastern Plats TD2 dam (active) is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Hoedspruit

Country/Area & River basin

Latitude
-25.6727

Longitude
27.4097

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam’s activity
Active

Current tailings storage impoundment volume (Mm³)
39

Planned tailings storage impoundment volume in 5 years (Mm³)
79

Please explain
The Hoedspruit dam (active) is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
K1 (K1 Concentrator)

Country/Area & River basin

Latitude
-25.71306

Longitude
27.3296

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam’s activity
Active

Current tailings storage impoundment volume (Mm³)
6

Planned tailings storage impoundment volume in 5 years (Mm³)
8

Please explain
The K1 (K1 Concentrator) (active) is located at Sibanye-Stillwater’s Kroondal operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
K150 (K1 Concentrator)

Country/Area & River basin

Latitude
-25.3296

Longitude
27.3296

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam’s activity
Active

Current tailings storage impoundment volume (Mm³)
6

Planned tailings storage impoundment volume in 5 years (Mm³)
8
Please explain

The K150 (K1 Concentrator) (active) is located at Sibanye-Stillwater's Kroondal operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
K2 (K1 Concentrator, K2 Concentrator in emergency)

Current tailings storage impoundment volume (Mm3)
10

Planned tailings storage impoundment volume in 5 years (Mm3)
17

Country/Area & River basin
South Africa Limpopo

Please explain

The K2 (K1 Concentrator, K2 Concentrator in emergency) (active) is located at Sibanye-Stillwater’s Kroondal operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Karee 1

Current tailings storage impoundment volume (Mm3)
17

Planned tailings storage impoundment volume in 5 years (Mm3)
17

Country/Area & River basin
South Africa Limpopo

The K2 (K1 Concentrator, K2 Concentrator in emergency) (active) is located at Sibanye-Stillwater’s Kroondal operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Karee 1

Current tailings storage impoundment volume (Mm3)
17

Planned tailings storage impoundment volume in 5 years (Mm3)
17

Country/Area & River basin
South Africa Limpopo

The K2 (K1 Concentrator, K2 Concentrator in emergency) (active) is located at Sibanye-Stillwater’s Kroondal operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Karee 1

Current tailings storage impoundment volume (Mm3)
17

Planned tailings storage impoundment volume in 5 years (Mm3)
17

Country/Area & River basin
South Africa Limpopo
Please explain

The Karee 1 dam (inactive) is located at Sibanye-Stillwater's Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Karee 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Limpopo</td>
</tr>
<tr>
<td>Latitude</td>
<td>-25.6769</td>
</tr>
<tr>
<td>Longitude</td>
<td>27.446</td>
</tr>
<tr>
<td>Hazard classification</td>
<td>High</td>
</tr>
<tr>
<td>Guideline(s) used</td>
<td>South Africa SANS 10286</td>
</tr>
<tr>
<td>Tailings dam's activity</td>
<td>Active</td>
</tr>
<tr>
<td>Current tailings storage impoundment volume (Mm3)</td>
<td>13</td>
</tr>
<tr>
<td>Planned tailings storage impoundment volume in 5 years (Mm3)</td>
<td>22</td>
</tr>
</tbody>
</table>

Please explain

The Karee 2 dam (active) is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Karee 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Limpopo</td>
</tr>
<tr>
<td>Latitude</td>
<td>-25.6769</td>
</tr>
<tr>
<td>Longitude</td>
<td>27.6769</td>
</tr>
<tr>
<td>Hazard classification</td>
<td>High</td>
</tr>
<tr>
<td>Guideline(s) used</td>
<td>South Africa SANS 10286</td>
</tr>
<tr>
<td>Tailings dam's activity</td>
<td>Active</td>
</tr>
<tr>
<td>Current tailings storage impoundment volume (Mm3)</td>
<td>16</td>
</tr>
<tr>
<td>Planned tailings storage impoundment volume in 5 years (Mm3)</td>
<td>28</td>
</tr>
</tbody>
</table>

Please explain

The Karee 3 dam (active) is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Karee 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Limpopo</td>
</tr>
<tr>
<td>Latitude</td>
<td>-25.6498</td>
</tr>
<tr>
<td>Longitude</td>
<td>27.4491</td>
</tr>
</tbody>
</table>
Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
8

Planned tailings storage impoundment volume in 5 years (Mm3)
17

Please explain
The Karee 4 dam (active) is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Marikana (K2 Concentrator)

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Latitude
-25.732519

Longitude
27.40939

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
12

Planned tailings storage impoundment volume in 5 years (Mm3)
29

Please explain
The Marikana (K2 Concentrator) (active) is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Paardekraal Central

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Latitude
-25.6373

Longitude
27.3171

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
160

Planned tailings storage impoundment volume in 5 years (Mm3)
198

Please explain
The Paardekraal Central (active) is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.
Tailings dam name/identifier
Paardekraal PK4

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
</tr>
</tbody>
</table>

| Latitude | -25.6273 |
| Longitude | 27.3053 |

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
40

Planned tailings storage impoundment volume in 5 years (Mm3)
74

Please explain
The Paardekraal PK4 (active) is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Paardekraal PK5

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
</tr>
</tbody>
</table>

| Latitude | -25.6457 |
| Longitude | 27.3271 |

Hazard classification
High

Guideline(s) used
South Africa SANS 10286

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm3)
17

Planned tailings storage impoundment volume in 5 years (Mm3)
34

Please explain
The Paardekraal PK5 (active) is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Waterval East

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
</tr>
</tbody>
</table>

| Latitude | -25.6676 |
| Longitude | 27.3166 |

Hazard classification
High

Guideline(s) used
South Africa SANS 10286
<table>
<thead>
<tr>
<th>Tailings dam's activity</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current tailings storage impoundment volume (Mm³)</td>
<td>2</td>
</tr>
<tr>
<td>Planned tailings storage impoundment volume in 5 years (Mm³)</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain
The Waterval East (active) dam is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GiSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Waterval West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td>South Africa</td>
</tr>
<tr>
<td>Latitude</td>
<td>-25.6642</td>
</tr>
<tr>
<td>Longitude</td>
<td>27.3131</td>
</tr>
<tr>
<td>Hazard classification</td>
<td>High</td>
</tr>
<tr>
<td>Guideline(s) used</td>
<td>South Africa SANS 10286</td>
</tr>
<tr>
<td>Tailings dam's activity</td>
<td>Active</td>
</tr>
<tr>
<td>Current tailings storage impoundment volume (Mm³)</td>
<td>36</td>
</tr>
<tr>
<td>Planned tailings storage impoundment volume in 5 years (Mm³)</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain
The Waterval West (active) dam is located at Sibanye-Stillwater’s Rustenburg operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GiSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Western Plats TD1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td>South Africa</td>
</tr>
<tr>
<td>Latitude</td>
<td>-25.7085</td>
</tr>
<tr>
<td>Longitude</td>
<td>27.5093</td>
</tr>
<tr>
<td>Hazard classification</td>
<td>High</td>
</tr>
<tr>
<td>Guideline(s) used</td>
<td>South Africa SANS 10286</td>
</tr>
<tr>
<td>Tailings dam's activity</td>
<td>Inactive</td>
</tr>
<tr>
<td>Current tailings storage impoundment volume (Mm³)</td>
<td>3</td>
</tr>
<tr>
<td>Planned tailings storage impoundment volume in 5 years (Mm³)</td>
<td>3</td>
</tr>
</tbody>
</table>

Please explain
The Western Plats TD1 (inactive) dam is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GiSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

<table>
<thead>
<tr>
<th>Tailings dam name/identifier</th>
<th>Western Plats TD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country/Area & River basin</td>
<td>South Africa</td>
</tr>
</tbody>
</table>

Note: The text provided is a natural representation of the document content.
The Western Plats TD2 (inactive) dam is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GfSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

The Western Plats TD5 (inactive) dam is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GfSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

The Western Plats TD6 (active) dam is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GfSTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.
Tailings dam name/identifier

Western Plats TD6 (active)

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Latitude

-25.702

Longitude

27.5409

Hazard classification

High

Guideline(s) used

South Africa SANS 10286

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm³)

5

Planned tailings storage impoundment volume in 5 years (Mm³)

5

Please explain

The Western Plats TD6 (active) dam is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier

Western Plats TD7

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Latitude

-25.702

Longitude

27.5409

Hazard classification

High

Guideline(s) used

South Africa SANS 10286

Tailings dam's activity

Inactive

Current tailings storage impoundment volume (Mm³)

5

Planned tailings storage impoundment volume in 5 years (Mm³)

5

Please explain

The Western Plats TD7 (inactive) dam is located at Sibanye-Stillwater’s Marikana operation in South Africa. This dam has a high-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes: • South Africa SANS 10286 • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier

East Boulder TSF Stage 3

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude

45.5059

Longitude

-110.085

Hazard classification

Significant

Guideline(s) used

Other, please specify (US state of Montana. new regulations (MCA 82-4-376))

Tailings dam's activity

Active

Current tailings storage impoundment volume (Mm³)

4

Planned tailings storage impoundment volume in 5 years (Mm³)

5.5

Please explain

The East Boulder TSF Stage 3 (active) dam is located at Sibanye-Stillwater’s East Boulder operation in the US. This dam has a significant-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes at the US operations: • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress; • US state of Montana regulations MCA 82-4-376. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier

Herzler TSF

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude

45.4533

Longitude
-109.7861

Hazard classification
Significant

Guideline(s) used
Other, please specify (US state of Montana. new regulations (MCA 82-4-376))

Tailings dam's activity
Active

Current tailings storage impoundment volume (Mm³)
6.6

Planned tailings storage impoundment volume in 5 years (Mm³)
9.7

Please explain
The Herzler TSF (active) dam is located at Sibanye-Stillwater’s Stillwater operation in the US. This dam has a significant-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes at the US operations: • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress.; • US state of Montana regulations MCA 82-4-376. The TSF is owned and controlled by Sibanye-Stillwater.

Tailings dam name/identifier
Nye TSF

Country/Area & River basin

| United States of America | Mississippi River |

Latitude
45.3856

Longitude
-109.8759

Hazard classification
Significant

Guideline(s) used
Other, please specify (US state of Montana. new regulations (MCA 82-4-376))

Tailings dam's activity
Inactive

Current tailings storage impoundment volume (Mm³)
3

Planned tailings storage impoundment volume in 5 years (Mm³)
3

Please explain
The Nye TSF (inactive) dam is located at Sibanye-Stillwater’s Stillwater operation in the US. This dam has a significant-hazard classification. Sibanye-Stillwater uses the following standards for classification and ratings purposes at the US operations: • Global Industry Standard on Tailings Management (GISTM) - classification against this standard is still work in progress.; • US state of Montana regulations MCA 82-4-376. The TSF is owned and controlled by Sibanye-Stillwater.

W-MM3.2c

(W-MM3.2c) To manage the potential impacts to human health or water ecosystems associated with the tailings dams in your control, what procedures are in place for all of your dams?

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Detail of the procedure</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable risk levels</td>
<td>Establishment of company-wide standards for acceptable risk levels that follow a company policy to eliminate or minimize water-related risks associated with tailings dams</td>
<td>Details of the procedure: All the operations across the different regions have risk and environmental management plans in place, which are aligned to the TSF regional standards or regulations. These plans provide guidance on acceptable tailings risk levels. Full compliance is expected. The Global Industry Standard for Tailings Management (GISTM) covers the entire TSF lifecycle, from site selection, design and construction, through management and monitoring, to closure and post-closure. It seeks to strengthen current practices in the mining industry by integrating social, environmental, local economic and technical considerations. The GISTM aims for zero harm to people and the environment. It elevates accountability to the highest organisational levels and adds new requirements for independent oversight. It also establishes clear expectations around global transparency and disclosure requirements, helping to improve understanding by interested stakeholders. A revised Group Tailings Management System, aligned with the GISTM, is being implemented across all operations. The system strives for zero harm at all tailings facilities. All facilities have detailed operating manuals aligned with life of mine plans. Continual safety assurance is applied through mandatory internal and independent audits and reviews to ensure any risks are identified and mitigated timeously. The GISTM is supported by ICMM conformance protocols that provide detailed guidance for certification, or assurance as applicable, and for equivalence with other standards. This is in addition to the existing commitments under the ICMM Mining Principles and the ICMM tailings governance framework position statement. The purpose of the Tailings Governance Framework position statement is to enable enhanced focus on the following 6 key elements of management and governance necessary to prevent catastrophic failures of tailings storage facilities: 1. Accountability, Responsibility and Competency 2. Planning and Resourcing 3. Risk Management 4. Change Management 5. Emergency Preparedness and Response 6. Review and Assurance. Frequency of evaluation: An annual stability analysis is conducted by a consulting engineer at each operation. In addition, quarterly 3rd-party reviews are also conducted to monitor the performance parameters of the facilities. These evaluations feed into the assessment of acceptable risk levels.</td>
</tr>
</tbody>
</table>

Please select | <Not Applicable> |
Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed.

Select the options that best describe your procedures for identifying and assessing water-related risks.

Direct operations

Coverage

- Full

Risk assessment procedure

- Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment

- More than once a year

How far into the future are risks considered?

- More than 6 years

Type of tools and methods used

- Tools on the market
- Enterprise Risk Management

Tools and methods used

- WRI Aqueduct
- COSO Enterprise Risk Management Framework
- ISO 31000 Risk Management Standard
- Other, please specify (King IV Report on Corporate Governance 2016 and internal company methods)

Comment

Sibanye uses the WRI Aqueduct Tool as a tool on the market to assess water-related risks. In addition to tools on the market, our ERM framework and processes are based on the ISO 31000 Risk Management Standard: Principles and Guidelines and the COSO Enterprise Risk Management Framework. Finally Sibanye also makes use of an approved company Risk Management Framework to assess water related risks.

Supply chain

Coverage

- Full

Risk assessment procedure

- Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment

- More than once a year

How far into the future are risks considered?

- More than 6 years

Type of tools and methods used

- Tools on the market
- Enterprise Risk Management

Tools and methods used

- WRI Aqueduct
- COSO Enterprise Risk Management Framework
- ISO 31000 Risk Management Standard
- Other, please specify (Internal company methods)

Comment

Sibanye uses the WRI Aqueduct Tool as a tool on the market to assess water-related risks. In addition to tools on the market, our ERM framework and processes are based on the ISO 31000 Risk Management Standard: Principles and Guidelines and the COSO Enterprise Risk Management Framework. Finally Sibanye also makes use of an approved company Risk Management Framework to assess water related risks.
Other stages of the value chain
Coverage
Partial

Risk assessment procedure
Water risks are assessed as part of an enterprise risk management framework

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
Enterprise Risk Management

Tools and methods used
WRI Aqueduct
COSO Enterprise Risk Management Framework
ISO 31000 Risk Management Standard
Other, please specify (Internal company methods)

Comment
Sibanye uses the WRI Aqueduct Tool as a tool on the market to assess water-related risks. In addition to tools on the market, our ERM framework and processes are based on the ISO 31000 Risk Management Standard: Principles and Guidelines and the COSO Enterprise Risk Management Framework. Finally Sibanye also makes use of an approved company Risk Management Framework to assess water related risks.

W3.3b
Which of the following contextual issues are considered in your organization's water-related risk assessments?

<table>
<thead>
<tr>
<th>Contextual Issues</th>
<th>Relevance & Inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: Water availability (including water scarcity) considerations are incorporated into the Group’s environmental water conservation and water demand management planning processes at every stage of the mine’s life cycle, from feasibility stage through to closure. Our operations are dependent on water to support safe production (drilling and blasting, milling and processing, cooling of equipment and hydraulic tailings re-mining) as well as for consumption and sanitation purposes. The group is therefore implementing initiatives to fulfill our aim of becoming independent from third party water suppliers in South Africa, which will assist with providing users at the water basin/catchment levels with much-needed additional water supplies. For example, in 2021 Sibanye-Stillwater started desalinising at the Stu PGM Site to improve water harvesting and water storage capability. An additional 33 ML of additional storage capacity has been created, with a further 45 ML planned. In addition, the drilling and operation of boreholes at Cooke Plant has effectively rendered the plant independent of the Rand Water Board supply system, effectively freeing up more than 300 ML of per annum from the Rand Water supply system, for other users or uses. Tools used in the assessment: Water availability at a basin/catchment level is assessed using the WRI Aqueduct Tool as well as Sibanye’s enterprise risk management tool (ISO 31000 and COSO aligned) and internal company knowledge and methods.</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: Water quality considerations are incorporated into the Group’s environmental and water management processes at every stage of the mine’s life cycle, from feasibility stage through to closure. South African and US legislation requires the management and protection of the water resource for all users. Sibanye-Stillwater is accordingly required by legislation to report incidents of non-compliance in the management of water resources, particularly regarding non-compliance in respect of discharge quality. Our water quality non-conformance procedure applies to all discharges into the environment. Under this procedure, we examine our water quality compliance monthly in the downstream environment in terms of various limits, most of which are more stringent than official water use licence limits. Notably, our South African PGM operations are zero effluent/discharge operations. Tools used in the assessment: Water quality at a basin/catchment level is assessed using internal company methods. For example, at the US operation, the Good Neighbor Agreement (GNA) adaptive management plan (AMP) was finalised and implemented in 2020. The AMP is a stakeholder-driven, independent water monitoring and assurance plan aligning with the goals and objectives of the GNA. The AMP is a tiered-response plan that creates triggers for water-quality reporting and action levels below state or federal limits. Monthly AMP monitoring reports are generated by the GNA technical consultants to keep the GNA stakeholders up to date on important water management and water quality KPIs.</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: Our host communities provide our social licence to operate and Sibanye-Stillwater recognises that this is imperative to maintaining legitimacy with our shareholders. 20 years ago, Sibanye signed the Good Neighbours Agreement (GNA) at the US operations, which remains ongoing. The GNA is a partnership agreement with three local stakeholder organisations: the Northern Plains Resource Council, the Stillwater Protective Association, and the Cottonwood Resource Council. The GNA, unique within the mining industry, provides an innovative framework for the protection of the natural environment, including water, while encouraging responsible economic development. It developmentally unites Sibanye-Stillwater to certain commitments and holds us to a higher standard than required by federal and state regulatory processes. Within Sibanye-Stillwater’s South African PGM operations, a careful balance is maintained regarding the drinking water made available to the local communities and the portion with which the mines consume. The Water Boards and Municipalities are continuously engaged on pertinent issues. Sibanye-Stillwater attends the following catchment forums on a quarterly basis or as determined by the forums’ respective Terms of Reference (in brackets the rivers associated with our operations are indicated): Wonderfonteinspruit Kromdraai Forum (includes the Lopopspuit and Wonderfonteinspruit catchments), Rietpruit (includes the Klein and Mookhelewpitse catchments), Bloksbokspruit and Suikerbosrand river catchments, Elandsdrif Forum (Elands and River Hexes), Crocodile West Forum (includes the Marelvena, Sterkstrom, Twelwepitspuit & Crocodile River), Olifants Forum (Blood River and Olifants) and finally the Sand-Vet Forum (includes the Theoren, Boschiupluit and Doring River). Tools used in the assessment: Sibanye-Stillwater uses internal company knowledge supported by the GNA and water catchment forums to monitor risks associated with stakeholder concerns and this incarnation of the GNA balances stakeholder interests with water resource availability at a basin/catchment level. As part of internal company knowledge, Sibanye-Stillwater is guided by position statements on teller stewardship, water conservation demand management, the water Board, etc. The stewardships and position statements guide Sibanye-Stillwater in stakeholder conflicts concerning water resources.</td>
</tr>
<tr>
<td>Implications of water on your commodities/raw materials</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: A recent study of water quality at the Stu PGM Site indicates the importance of water on our key commodities and raw materials. Sibanye-Stillwater uses the Group’s enterprise risk management tool (ISO 31000 and COSO aligned) and internal company methods. For example, at the US operation, the Good Neighbor Agreement (GNA) adaptive management plan (AMP) was finalised and implemented in 2020. The AMP is a stakeholder-driven, independent water monitoring and assurance plan aligning with the goals and objectives of the GNA. The AMP is a tiered-response plan that creates triggers for water-quality reporting and action levels below state or federal limits. Monthly AMP monitoring reports are generated by the GNA technical consultants to keep the GNA stakeholders up to date on important water management and water quality KPIs.</td>
</tr>
<tr>
<td>Water-related regulatory frameworks</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: South African and US legislation require the management and protection of the water resource for all users. As part of legislation, incidents of non-compliance in the management of water resources, particularly regarding non-compliance in respect of discharge quality, are required to be reported. Sibanye-Stillwater must remain compliant with the water-related regulatory frameworks to avoid penalties, fines or shutdowns. Our water quality non-conformance procedure applies to all discharges into the environment. It has largely been applicable to the gold operations and US PGM operations, given that the South African PGM operations are zero effluent/discharge operations. Under this procedure, we examine our water quality compliance monthly in the downstream environment in terms of various limits, most of which are more stringent than official water use licence limits. Tools used in the assessment: Water-related regulatory frameworks are always included and are always considered relevant to our risk assessment process. Risk implications such as these are assessed using Sibanye-Stillwater’s enterprise risk management (ISO 31000 and COSO aligned) and internal company methods. Internal company methods included adhering to the Environmental Impact Assessments methodologies set out in the requirements by the South African Department of Forestry, Fisheries and the Environment (DFFE). Internationally recognised frameworks and management standards, including the ISO 14001:2015 Environmental Management System standard, the International Council of Mining and Metals, the World Gold Council’s Responsible Gold Mining Principles, and the United Nations Sustainable Development Goals guide the team. The values and principles espoused by these frameworks are fully embedded and embedded in our policies, position statements, management systems, risk management plans and environmental management plans and programmes. Compliance with legislation and regulations, codes and duty of care supported by the principles, underscores our approach to environmental management and sustainability issues in general.</td>
</tr>
<tr>
<td>Status of ecosystems and habitats</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: Status of ecosystems and habitats is relevant and always included in Sibanye-Stillwater’s South African water-related risk assessments. Sibanye-Stillwater has a specific position statement on biological diversity management. Sibanye-Stillwater’s approach to biodiversity management and monitoring supports a paradigm shift from a “no net loss” to a “net gain” in biodiversity, through the implementation of a migration hierarchy as well as specific catchment and regional-based management plans. Biodiversity management, a complex interplay of biotic and abiotic factors, drives holistic environmental management with the aim to promote resilient ecosystems beyond mine closure. At Sibanye-Stillwater, net gain is defined as the improvement in key ecosystems to support ecological functionality from the baseline at which the Group took ownership. This definition is applicable to established operations as many of these have been in operation long before baseline assessments of biodiversity began to be conducted, and thus it is not possible to set accurate pre-impact baselines. In terms of new developments, the aim is to achieve no net loss against the established baseline prior to the start of project construction and to investigate offset opportunities along with restoration goals to work towards a net gain. Tools used in the assessment: Risk implications such as these are assessed using Sibanye-Stillwater’s enterprise risk management (ISO 31000 and COSO aligned) and internal company methods. Internal company methods included adhering to the Environmental Impact Assessments methodologies set out in the requirements by the South African Department of Forestry, Fisheries and the Environment (DFFE). Internationally recognised frameworks and management standards, including the ISO 14001:2015 Environmental Management System standard, the International Council of Mining and Metals, the World Gold Council’s Responsible Gold Mining Principles, and the United Nations Sustainable Development Goals guide the team. The values and principles espoused by these frameworks are fully embedded and embedded in our policies, position statements, management systems, risk management plans and environmental management plans and programmes. Compliance with legislation and regulations, codes and duty of care supported by the principles, underscores our approach to environmental management and sustainability issues in general.</td>
</tr>
<tr>
<td>Access to fully-functioning, safely managed WASH services for all employees</td>
<td>Relevant, always included</td>
<td>Explanation of why this issue is included in the assessment: Our operations are dependent on water for consumption and sanitation purposes, and so access to fully-functioning, safely managed WASH services for all employees is relevant and always considered in our water related risk assessments. The safety of our employees is of paramount concern. We have established clear protocols and implemented measures to ensure employee safety which respect to access to fully-functioning, safely managed WASH services. The COVID 19 pandemic has raised concerns around hygiene with specific reference to washing of hands using clean water. In terms of our approach and measures adopted by Sibanye-Stillwater to manage the COVID 19 pandemic, hygiene programmes and a disinfecting control programme have been implemented. Personal hygiene mitigation activities include awareness about physical distancing, regular sanitising of hands and the installation of sanitizers at biometric readers. Tools used in the assessment: Risk implications such as these are assessed using Sibanye-Stillwater’s enterprise risk management (ISO 31000 and COSO aligned) and internal company methods. As part of internal company methods, Sibanye’s overarching Environmental, Social and Governance Policy incorporates water management for consumption and sanitation purposes.</td>
</tr>
</tbody>
</table>

Other contextual issues, please specify

Please select
Which of the following stakeholders are considered in your organization’s water-related risk assessments?

Customers

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: Water is a critical part of Sibanye-Stillwater’s production process, and the lack thereof could cause production delays, ultimately affecting delivery of product to our customers. Fostering a long-term relationship with our clients is critical to our value creation. Part of this value chain ensures that customers are considered relevant and are always included in our water-related risk assessments. Methods of engagement: The automotive industry represents the largest PGM customer using precious metals in catalytic converters of petrol engines, and platinum in diesel vehicles. Sibanye-Stillwater engages with customers through tender and contract processes as well as through customer satisfaction surveys.

Employees

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: Our operations are dependent on water for consumption and sanitation purposes. Employee safety is of utmost importance to us. In terms of our approach and measures adopted by Sibanye-Stillwater to manage the COVID 19 pandemic, hygiene programmes and a disinfec ting control programme have been enforced. Personal hygiene mitigation activities include awareness about physical distancing, regular sanitising of hands and the installation of sanitisers at biometric readers. Potable water is critical to the hygiene process. For this reason, Sibanye-Stillwater engages with its workforce through various internal publications, which highlight overarching employee concerns.

Investors

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: Investors are increasingly requiring environmental, social and governance (ESG) excellence as critical investment criteria. There is recognition that strong social legitimacy to operate through exemplary ESG credentials is essential for superior sustainable business performance. As part of ESG, environmental concerns, including water management, are important aspects to investors. If Sibanye-Stillwater is perceived to not be managing our water use appropriately then this may negatively impact our share price. For this reason, investors are considered extremely relevant and are always included in our water-related risk assessments. Methods of engagement: Sibanye-Stillwater engages with its investors through annual publications of Sibanye-Stillwater’s Integrated Report and through investor roadshows, in addition, specific investors do regular one-on-one engagements and regular follow-ups on specific environmental issues, including water and water-related risks.

Local communities

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: It is important to build sustainable relationships with stakeholders in communities that host our operations. This is critical for business stability and is an important contributor to the success of our business. As such, local communities are relevant and always included in our water-related risk assessments. Sibanye-Stillwater shares water resources with local communities across all of our sites. There is opportunity for Sibanye-Stillwater to support government initiatives through leveraging expertise to improve community WASH and other water-related outcomes through reducing our dependence on surrounding resources. Furthermore, Sibanye-Stillwater is committed to implementing sound catchment and close-mine closure strategies to ensure improved water security and quality over the long term for communities in which we operate. Examples of the activities undertaken that assisted in informing closure planning initiatives around water include: 1. geochemical testing of various tailings and waste rock areas to inform seepage risks, rehabilitation and removal requirements; 2. various updates in ground water studies to ensure the water user receptors are updated and the plume modelling is kept updated, this informs who we consult with from a social closure perspective, our long term groundwater risks and the required mitigation; 3. sediment analyses to determine point of historical enrichment, risks and closure and rehabilitation requirements; 4. integrated catchment modelling of several catchments in the West Rand to inform current and future use requirements, in particular to manage reverting strategies; 5. We also commenced with integrated groundwater basin models to inform similar considerations to point 4, and in fact these studies contribute to the modelling in point 4 and assessing the risk of decent and thus treatment requirements after closure; 6. hydrogeological assessments and interim rehabilitation plans for various areas. Methods of engagement: Following the spread of the COVID-19 pandemic and implementation of associated lockdown regulations and social distancing measures, virtual meetings became the preferred method of meeting rather than having face-to-face, physical meetings. Given that our communities have limited access to digital technology, there was minimum engagement for much of 2020.

NGOs

- Relevant, sometimes included

 Explanation of why these stakeholders are included in the risk assessment: Environmental NGOs in South Africa concentrate largely on environmental justice and sustainable development. Their work examines the relationship between humans and the environment concentrating not only on the impact of humans on the environment, but also on the effects of globalization on the planet. For this reason, Sibanye-Stillwater considers NGOs relevant and included in our water-related risk assessments. Methods of engagement: Sibanye-Stillwater engages with NGOs through formal informal meetings, and has grievance and complaints mechanisms in place.

Other water users at a basin/catchment level

- Relevant, sometimes included

 Explanation of why these stakeholders are included in the risk assessment: Farmers and communities of nearby towns are important because water is a shared resource and there are other water users at catchment level. These stakeholders have a right to clean water suppliers and conflicts can impact the Sibanye-Stillwater’s social licences to operate in those areas. Sibanye-Stillwater recognises that water is a shared resource. The group is therefore implementing initiatives to fulfil our aim of becoming independent from third-party water suppliers in South Africa, which will assist with providing users at the water basin/catchment level with much-needed additional water supplies. For example, in 2021 Sibanye-Stillwater started desalting dams at the SA PGM to improve water harvesting and water storage capability. An additional 33 ML of additional storage capacity has been created, with a further 45 ML planned. In addition, the drilling and operation of boreholes at Cooke Plant has effectively rendered the plant independent of the Rand Water Board supply system, effectively heaving up more than 350 ML of water per annum from the Rand water supply system, for other users or users. Sibanye-Stillwater participates in the UN Global Compact’s accelerated programme of the 17 Sustainable Development Goals (SDGs). We have ensured that our ESG deliverables are aligned with the SDGs so we can have tangible proof points and actions geared towards meeting the set targets. In particular, we are committed to pursuing SDG Goal 6, related to Clean Water and Sanitation. Methods of engagement: Sibanye-Stillwater engages with water users at a basin/catchment level through engagement in various water forums. We also have grievance and complaints mechanisms in place in which these members may engage with us.

Regulators

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: Sibanye-Stillwater is committed to drive water security, water independence and responsible water management in line with and including compliance to regulatory requirements. Sibanye engages with regulators/government institutions such as local municipalities and South Africa’s Department of Water and Sanitation and Human Settlements (DWSHS). All the municipalities within which we operate, and the respective regulators, are factored into our water-related risk assessments. Regulatory inspections and external audits on licences and authorisations (environmental management plans, environmental authorisations, water use licences, waste licences, air emissions licences etc.) are performed by the various government departments. For example in the South African operations, these include the Department of Minerals and Energy Department or the Department of Forestry, Fisheries and Environment. Methods of engagement: Sibanye-Stillwater has dedicated teams at each of our operations responsible for engaging directly with Regulators via email correspondence of formal meetings.

River basin management authorities

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: Sibanye-Stillwater recognises that water is a shared resource that becomes increasingly more critical due to water stresses. In particular, our SA PGM operations are located in an area which is recognised to be water stressed. These operations rely on external suppliers (Rand Water Board, the local municipality, and Rustenburg Water Service Trust) for more than 65% of the total water demand. A large portion of this water is sourced from the Rand Water Board, the local municipality, and Rustenburg Water Service Trust for more than 65% of the total water demand. For this reason, the River basin management authorities for the Vaal River catchment are relevant and always included in our water-related risk assessments. Methods of engagement: Sibanye-Stillwater has dedicated teams at each of our operations responsible for engaging directly with river basin authorities such as the Rand Water Board and the Rustenburg Water Service Trust.

Statutory special interest groups at a local level

- Relevant, sometimes included

 Explanation of why these stakeholders are included in the risk assessment: Sibanye-Stillwater applies strong and transparent corporate governance by publicly presenting compliance findings at water catchment management forums. These forums include Wonderboomfontein-Kromdraai Forum (includes the Loopuitspruit, Wonderboomfontein en Mooirivierlaags reaches), Rietspruit Forum (Includes the Klein Wes Rietspruit and Leeuspruit), Blesbokspruit Forum (Includes the Blesbokspruit and Sulkeaaspruit river reaches), Elands/Hex Forum (Elands and Hex Rivers), Crocodile West Forum (Includes the Mandawina, Stekelstrom, Tweeliespruit & Crocodile River), Offsets Forum (Bloed River and Offsets) and finally the Sand-Vlei Forum (Includes the Theron-, Boschkruispruit and Doring River). Sibanye-Stillwater considers these forums relevant and therefore sometimes included in our water-related risk assessments. Methods of engagement: Sibanye-Stillwater has dedicated teams at each of our operations responsible for directly engaging with water catchment forums through formal or informal meetings.

Suppliers

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: At Sibanye-Stillwater water is considered across three aspects, 1. The need for the right quantity of water; 2. The need for the right quality of water at the right time. Water availability (including water scarcity) and water quality considerations, are incorporated into the Group’s environmental and water conservation and water demand management planning processes at every stage of the mine’s life cycle, from feasibility stage through to closure. Our operations are dependent on water to support safe production (drilling and blasting, milling and processing, cooling of equipment and hydraulic tailings re-mining) as well as for consumption and sanitation purposes. Sibanye-Stillwater therefore considers suppliers of water (such as Rand Water) to be particularly relevant and always included in our water-related risk assessments. Methods of engagement: Sibanye-Stillwater participates in key supplier engagements through surveys and contracts in negotiations.

Water utilities at a local level

- Relevant, always included

 Explanation of why these stakeholders are included in the risk assessment: We participate in various external stakeholder forums at a local level including (in South Africa): • The Rand Water Board hosted water forums • Sedibeng Water Board Both forums are considered relevant and are always included in our water-related risk assessment as local utilities have a duty to supply water to our mines. The group’s demand for water to supply to our mines is critical for the operations of our PGM mines. Methods of engagement: Sibanye-Stillwater engages with water utilities primarily focused on engaging through formal and informal meetings with the Rand Water Board and the Sedibeng Water Board regarding water issuing waters, potential supply and tariff changes.

Other stakeholders, please specify

| Please select |
Describe your organization's process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

The Sibanye-Stillwater Board is responsible for risk governance and sets the tone for overseeing the entire Group risk management process. The Risk Committee is appointed with delegated powers from the Board to assist the Board with the risk management process. The Risk Committee convenes quarterly or as required to review the risk management processes. Risks are identified through evaluations of input from the business environment, enterprise risk management, stakeholder engagement, market analyses and scenario analysis.

In 2019, Sibanye conducted climate change Scenario analyses aligned with the recommendations of the TCFD aimed at identifying and assessing the various climate change related risks and opportunities, which included water that may have a substantive financial impact on its business model. As a member of the International Council on Mining and Metals (ICMM), the analysis also drew from the principles of the ICMM report: “Adapting to a changing climate: implications for the mining and metals industry”, which includes an assessment of the impact that climate change will have on Sibanye-Stillwater’s direct (core) operations, value chain, as well as its broader community. The assessment included an analysis of both the physical risks (acute and chronic water risks were highlighted) as well as the transitional risks (regulatory, markets and technology and reputational) that climate change presents for Sibanye-Stillwater’s direct operations based on three scenarios which included the IPCC’s RCP 8.5, RCP4.5 and RCP 2.6 scenarios. This process has allowed Sibanye-Stillwater to not only identify, but also assess the various climate change related risks and opportunities under different climatic scenarios. As a response to the assessment, we have developed an integrated ESG Policy, which includes our water policy and objectives, as well as various related water position statements aimed at managing the water risks identified during the scenario analysis process.

Sibanye-Stillwater also uses following tools to determine water stresses and risks.

Application of the tools:

Sibanye-Stillwater uses the WRI Aqueduct Tool to identify water-related risks at a group-level, across all operations and along our value chain. The Group also uses ISO 31000: 2018 Risk Management Standard; COSO Enterprise Risk Management Framework and internal company knowledge to guide water conservation and water demand management (WCWDM). Sibanye-Stillwater uses these tools to respond to water risks and matters because the Group is committed to:

- driving water security, independence and responsible water management including compliance to regulatory requirements;
- optimising water use;
- developing predictive water balance models that drive a water conservation and water demand management (WCWDM) plans.

How the outcomes of the risk assessment are used to inform the internal decision-making process:

The Social, Ethics and Sustainability Committee and the Risk Committee, both Board-level committees, are responsible for addressing water-related risks and opportunities associated with strategic sourcing of water, consumptive patterns, water security, and water independence, amongst others. The Committees provide strategic direction and oversight with a view to ensuring the effective implementation of the water strategy and policy across the business.

As an integral part of governance and under custodianship of the Group Risk Department, a comprehensive enterprise-wide risk management process used to assess and rank, amongst others, any water-related risk in the Group, and to implement strategies to eliminate, mitigate or control these risks. The key categories of risks insofar water is concerned are:

- security of water for safe production,
- current and residual impact of our mining on the availability and quality of water in the regions in which we operate and
- cost of water to our business

In addition to the above, at Sibanye-Stillwater we apply strong and transparent corporate governance by:

- publicly disclosing the Group's approach to WCWDM
- publicly presenting water compliance findings at water catchment management forums
- allocating clear responsibilities and accountabilities for WCWDM plans across all corporate, management and site levels
- integrating water considerations into business planning
- publicly reporting the Group water use performance, material water risks and related issues in our Integrated Annual Report;
- publicly disclose water-related performance and risks processes such as the CDP, 20F and so on.

Zednet is used as consistent approach to site level accounting and assessment. It is fundamental to adequately capturing operational contexts, water practices, risks, opportunities and management responses. This information enables site level accounting and assessment is intended to help develop comparable and material information as the foundation for accurate and consistent external reporting.

W4. Risks and opportunities

W4.1

(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain
(W4.1a) How does your organization define substantive financial or strategic impact on your business?

Definition of substantive financial or strategic impact:

Sibanye-Stillwater considers substantive financial or strategic impact (or what is defined as “material” in the group’s mainstream filings) as stakeholder concerns that can have major importance to the financial, economic, reputational and legal aspects of our business and, in terms of integrated reporting, are those issues which may impact our ability to create value in the short, medium and long term. It also informs our stakeholders’ assessments of and decisions about our business.

In particular, climate change risks have been identified as having potential strategic impacts, for example related to market-risks, and hence these are considered to be substantive. Additionally, a key consideration/indicator is also our business strategy. Our starting point of our 2020 materiality process was to assess our strategy so that material issues could be considered in the context of each of the six strategic focus areas. Particular emphasis was given to environmental, social and governance issues, which includes climate change related aspects on the basis that embedding ESG excellence is central to our strategy.

Sibanye-Stillwater has a well-formulated risk management process supported by the company’s governance structure that comprises experienced and skilled teams who are committed to the delivery of our strategic objectives. Material issues are identified through a materiality workshops, supported by research and analysis of our internal and external environments and stakeholder feedback, which in turn enables us to review our risk register on a biennial basis. Information contained in the Board reports was also considered. The materiality process took account of related international guidelines such as the International Integrated Reporting Framework, King IV and GRI.

Metrics used to identify substantive change:

Sibanye-Stillwater uses changes in earnings or capital as the indicator that determines substantive change.

Threshold in the metrics that indicates substantive change:

Through the aforementioned process, Sibanye-Stillwater has defined strategic or substantive financial impact as the realisation of any risk or opportunity related to earnings or capital with a value above R500 million. The quantifiable indicators that have been used to define a substantive financial impact are linked to both the income statement (revenues and expenditures) as well as the balance sheet (Assets and liabilities and capital) of the business. Any climate related occurrence that has an impact of R500 million or more on the company’s income statement or balance sheet is considered to be substantive.

Whether the definition applies to direct operations, or supply chain, or both:

Our definition for substantive financial or strategic impact on our business covers both our direct operations as well as supply chain.

Example of substantive impact:

Climate change, and more specifically water security, is considered a direct risk with potential substantive impact on Sibanye-Stillwater’s South African operations. We therefore seek to proactively reduce our dependence on water resources through water security and water independence strategies. Water scarcity and water quality considerations are incorporated into the Group’s environmental planning processes, from early stage feasibility to post mining and closure, to ensure the sustainability of our operations, host communities and ecosystems.

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>Our South African gold and platinum group metals (PGM) operations each have unique and diverse water related challenges and risks. South Africa has a semi-arid climate, which means that the region’s precipitation rate is below the potential rate of evapotranspiration. This implies that water resources are limited and that there is increased risk for higher water stress and drought in areas that have high demand for water. South Africa is projected to become generally drier under enhanced anthropogenic forcing, with an associated increase in dry spells and droughts. Furthermore, extreme weather events (including severe thunderstorms and lightening) are a reality at our South African operations and are projected to increase in frequency in future. The likelihood of both increased rainfall variability and increased intensity of rainfall events, in the areas where Sibanye-Stillwater operates, have been assessed as part of our TCFD scenario-analysis. Extreme rainfall events could result in flooding at Sibanye-Stillwater’s direct operations and infrastructure damage to roads and buildings, resulting in potential closure of the affected mine. Severe storm events may also damage water infrastructure exacerbating water scarcity, especially at our South African platinum group minerals operations. Other risks associated with acute physical climatic events also includes risk to tailings facilities and increased water pumping costs. Furthermore, extreme weather events such as rainfall storms may also impact Sibanye-Stillwater’s supply chain. Sibanye is heavily dependent on the South African National Grid System which could be interrupted due to infrastructure damage due to intense storms. This could have an impact on the operation of pumping and other infrastructure to deal with a large volumes of water in a short space of time. The US operations have less water scarcity and security risks. However, their locations within nature conservation areas requires a very high-level of management to ensure that our mining operations do not negatively impact the freshwater sources and biospheres in that region. We are committed to upholding the principles of the Good Neighbor Agreement in the US, which in some cases binds us to higher environmental standards than those required by regulations.</td>
</tr>
</tbody>
</table>

(W4.1c)
By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

| Country/Area & River basin | Number of facilities exposed to water risk | % company-wide facilities this represents
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa Limpopo</td>
<td>3</td>
<td>26-50</td>
</tr>
<tr>
<td></td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>54912600000</td>
</tr>
<tr>
<td></td>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td>% company’s total global revenue that could be affected</td>
<td>41-50</td>
</tr>
<tr>
<td></td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>South Africa Orange</td>
<td>5</td>
<td>26-50</td>
</tr>
<tr>
<td></td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>22817800000</td>
</tr>
<tr>
<td></td>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td>% company’s total global revenue that could be affected</td>
<td>11-20</td>
</tr>
<tr>
<td></td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>United States of America Mississippi River</td>
<td>3</td>
<td>26-50</td>
</tr>
<tr>
<td></td>
<td>Production value for the metals & mining activities associated with these facilities</td>
<td>45154100000</td>
</tr>
<tr>
<td></td>
<td>% company’s annual electricity generation that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td>% company’s global oil & gas production volume that could be affected by these facilities</td>
<td><Not Applicable></td>
</tr>
<tr>
<td></td>
<td>% company’s total global revenue that could be affected</td>
<td>31-40</td>
</tr>
<tr>
<td></td>
<td>Comment</td>
<td></td>
</tr>
</tbody>
</table>

W4.2

Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin
Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Type of risk</th>
<th>Primary risk driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Increased water scarcity</td>
</tr>
</tbody>
</table>

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
How the impact identified will affect our direct operations: Our South African gold and platinum group metals (PGM) operations each have unique and diverse water related challenges and risks. South Africa has a semi-arid climate, which means that the region’s precipitation rate is below the potential rate of evapotranspiration. This implies that water resources are limited and that there is increased risk for higher water stress and drought in areas that have high demand for water. South Africa is projected to become generally drier under enhanced anthropogenic forcing, with an associated increase in dry spells and droughts. High water stress is especially evident at our South African PGM operations where the Rustenburg, Kroondal and Marikana operations are located. These operations have limited ground- and surface-water sources, sources which are increasingly pressured by growing demand for water in the region because of expanding communities. This results in a material risk to the availability of water to these operations that requires proactive management to ensure availability (or security of supply) to our operations. Prolonged droughts and resulting water scarcity, especially at our South African PGM operations, has been identified as a key climate change-related water risk. Related to this are the secondary risk of water restrictions and water cost increases imposed by municipalities as water becomes scarcer.

Timeframe
Current up to one year

Magnitude of potential impact
High

Likelihood
Very likely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
150450000

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact
The potential financial impact of drought/water scarcity on Sibanye-Stillwater’s electricity supply was calculated by assuming the impact of one day’s lost revenue at the South African PGM operations. One day’s loss of 2020 revenue at Sibanye’s PGM operations in South Africa equates to about ZAR 150.45 million.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
Sibanye-Stillwater is responding to this risk by adopting water efficiency, reuse, recycling, and conservation practices. We pursued 7 main projects in 2020 to reduce our risk associated with water scarcity and stress: 1. Boreholes were installed at Kroondal and our Cooke Plant, reducing the water demand from external water suppliers. 2. Driefontein’s water treatment facility is being extended. Driefontein will be almost completely independent from municipal water supply by Q4 2021. 3. The Kloof water treatment plant, part of Phase 1 of the operation’s independence drive, will reduce Kloof’s reliance on Rand Water Board by +/-33% in 2021. 4. Alternative groundwater sources and the optimisation of water recovery from tailings storage facilities through scavenger wells are under investigation to ensure security of supply at the Marikana operation. A geophysics, drilling and testing investigation is under way. 5. A major catchment water balance study has commenced for several catchments within the Upper Vaal Water Management Area, specifically around the SA gold operations. This study integrated historical and present catchment flow data from all water users within the catchment. The study will be completed in 2021. 6. A project to access 2.5 Ml/day water from the Hartbeespoort Canal, to improve the security of water supply to the Marikana operations. Projects to increase this to 10 Ml/day with possible treatment facilities will be pursued during 2021/2022. 7. Predictive modelling and 5Y WCWDM projects were initiated in 2020 and will be completed in 2021. (About 45% was completed by end of 2020) Furthermore, our Water Health Management Position Statement and our Water Stewardship Position Statement aim to assist the Group adapt to the potential of climatic impacts water scarcity by implementing our water strategy across our operations. We aim to preserve and protect water resources through: responsible use of water resources to maintain our environmental licence to operate; encourage sound management of water systems and efficient water use; reduction in impact on water resources and drive environmental consciousness through awareness, stewardship, and communication on environmental issues. In addition in 2021, Sibanye-Stillwater started desilting dams at the SA PGM Segment to improve water harvesting and water storage capability. An additional 33 ML of additional storage capacity has been created, with a further 45 ML planned.

Cost of response
9950000

Explanation of cost of response
The cost associated with the projects implemented by Sibanye-Stillwater during 2020 can be broken down as follows: 1. Kroondal borehole cost R6.2 million project 2. Cooke Plant borehole cost R2.5 Million Project 3. Hartbeespoort Canal project cost R 1.25 million. There will be future costs associated with these projects going forward.

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Limpopo</td>
</tr>
</tbody>
</table>

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Type of risk</th>
<th>Primary risk driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Severe weather events</td>
</tr>
</tbody>
</table>
Primary potential impact
Closure of operations

Company-specific description
How the impact identified will affect our direct operations: Extreme rainfall events (including severe thunderstorms and lightening) are a reality at our South African operations. Consistent with projected decreases in rainfall, extreme rainfall events are projected to increase in frequency over most of the central interior. The likelihood of both increased rainfall variability and increased intensity of rainfall events, in the areas where Sibanye-Stillwater operates, have been assessed as part of our TCFD scenario-analysis. Extreme rainfall events could result in flooding at Sibanye-Stillwater’s direct operations and infrastructure damage to roads and buildings, resulting in potential closure of the affected mine. Severe storm events may also damage water infrastructure exacerbating water scarcity, especially at our South African platinum group minerals (PGM) operations. Other risks associated with acute physical climatic events also includes risk to tailings facilities and increased water pumping costs. In addition, excessive rainfall can cause uncontrolled decants from return water dams. Such incidents were observed during 2020 at Kroondal return water dam and Rustenburg UG2 concentrator. While neither incidents had long-term negative environmental consequences, the risk of environmental impacts related to extreme weather events is evident. Furthermore, extreme weather events such as rainfall storms may also impact Sibanye’s supply chain. Sibanye is heavily dependent on the South African National Grid System which could be interrupted due to infrastructure damage due to intense storms. This could have an impact on the operation of pumping and other infrastructure to deal with a large volumes of water in a short space of time.

Timeframe
1-3 years

Magnitude of potential impact
High

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
150450000

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact
The potential financial impact of drought/water scarcity on Sibanye-Stillwater’s electricity supply was calculated by assuming the impact of one day’s lost revenue at the South African PGM operations. One day’s loss of 2020 revenue at Sibanye’s PGM operations in South Africa equates to about ZAR 150.45 million.

Primary response to risk
Develop flood emergency plans

Description of response
Sibanye-Stillwater’s response to this risk includes the development of flood emergency plans and tailings storage facility (TSF) management: Emergencies are governed at Sibanye-Stillwater’s operations by procedures and protocols to address any eventuality that may arise, including but not limited to injuries and major or high potential scenarios such as floods. An emergency response is triggered through on-site control rooms that are manned 24/7 and which follow protocols to inform relevant emergency services, senior management, and proto teams when necessary. Management has been trained in emergency control and in the event of a major incident, an emergency control room is set-up and manned by senior management from which the event is coordinated and tracked. We also track environmental incidents such as severe storm events as prescribed by our emergency response and TSF management plans. We highlight the remedial action to be taken to address any environmental incident to ensure that the appropriate lessons are learnt. As an example, remedial actions were undertaken in 2020 at the Kroondal return water dam and Rustenburg UG2 concentrator when excessive rainfall can cause uncontrolled decants from these return water dams. The remedial actions included the desilting of the return water dams and removal of reeds to increase storage capacity. Plant operations were resumed to reduce water to the return water dam via the TSFs (increased consumption of recycled water). Sibanye-Stillwater has storm water management plans for each operation and are in the process of updating these plans. In addition, flood management plans are in place at various shafts where there is a significant risk of the flooding of underground workings. During 2020, we also appointed a group wide tailings engineer to enhance focus on the elements of management and governance necessary to prevent catastrophic failures of our TSFs. The cost of this engineering appointment is born in-house and does not have an external cost.

Cost of response
5200000

Explanation of cost of response
Explanation of the approach used to calculate the cost of response: The cost of the storm water management related studies and the implementation of the recommendations is expected to cost up to ZAR 5.2 million.
(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

| South Africa | Limpopo |

Stage of value chain
Supply chain

Type of risk & Primary risk driver
Physical
Drought

Primary potential impact
Reduction or disruption in production capacity

Company-specific description
Electricity forms an essential part of Sibanye-Stillwater’s operations, without which we cannot operate safely. How the impact identified will affect the value chain: Sibanye-Stillwater’s South African operations currently purchase the majority of their electricity supplies from the national power utility, Eskom. The utility generates the most of its electricity from coal fired power stations, which are highly water intensive. Water scarcity or droughts could result in severe electricity production constraints ultimately impacting the end user, such as Sibanye-Stillwater. Sibanye-Stillwater’s operations in South Africa would be adversely affected if their grid connected electricity was interrupted. As a result, Sibanye-Stillwater’s production capacity would be reduced or disrupted.

Timeframe
Current up to one year

Magnitude of potential impact
High

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
150450000

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact
The potential financial impact of drought/water scarcity on Sibanye-Stillwater’s electricity supply was calculated by assuming the impact of one day’s lost revenue at the South African PGM operations. One day’s loss of 2020 revenue at Sibanye’s PGM operations in South Africa equates to about ZAR 150.45 million.

Primary response to risk
Direct operations
Increase investment in new technology

Description of response
Sibanye-Stillwater response to this risk includes increasing investments in new technologies: A strategic energy sourcing roadmap has been developed to materially offset a portion of our grid-electricity requirements with low-cost, renewable energy in the medium term. The roadmap development scope included a review of the South African electricity supply industry, research of alternative supply and technology options, the development of an energy and GHG emissions forecast over the life of our mines and an assessment of site and electrical infrastructure. Using the insights gained, a set of project opportunities and supporting business cases were developed and prioritised. The following projects aim to achieve a 20% renewable penetration by 2030: - Reinitiated development and negotiation of the SA Gold 50MW solar photovoltaic (PV) project with construction anticipated to commence in 2022. - Feasibility studies for prospective 50MW and 85MW solar PV projects for the SA PGM Rustenburg and Marikana operations respectively. - A Request for Information to test the market for remote wind power with wheeling through the Eskom network.

Cost of response
800000000

Explanation of cost of response
Explanation of the approach used to calculate the cost of response figure: The total capital cost of the renewable energy projects is anticipated to be approximately ZAR 8 billion. These costs are based on detailed feasibility assessments. These projects will be third-party financed through power purchase agreement arrangements. The projects will be undertaken in phases. The costs of the measures, to date, associated with developing the renewable energy projects is approximately ZAR 15 million.

W4.3a

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized
Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity
Efficiency

Primary water-related opportunity
Improved water efficiency in operations

Company-specific description & strategy to realize opportunity

Why water recovery from sewage management is considered strategic for the company: This opportunity will assist Sibanye-Stillwater drive water independence, which has been identified as a material matter. In 2020, 47% of our total water usage at the South African (SA) operations was sourced from municipal and water boards (e.g. Rand Water Board and Sedibeng Water Board). This included grey water purchased from Rustenburg Water Services Trust, comprising 5% of the total usage at the SA operations. The opportunity remains to significantly reduce our dependence on these suppliers through minimising wasteful water use and leakage and to drive the water independence strategy across the SA operations. Independence from municipal water sources means that there is more water available for our doorstep communities. An explanation of the actions to realize the opportunity: To realise this water independence opportunity, we have the following two projects underway - 1. An extension to Driefontein’s water treatment facility is underway. The 5Ml/day treatment extension will see Driefontein almost completely independent from municipal water supply by Q4 2021. 2. The Kloof water treatment plant, which forms part of Phase 1 of the operation’s independence drive, will reduce the reliance of the Kloof operations on Rand Water Board. Continuous focus on leak reduction initiatives though smart metering, monitoring and reporting initiatives. An example of the strategy in action: 1. The 20 Ml/day potable water treatment plant that renders Driefontein more than 95% independent from municipal supply. This facility enables cost savings of more than R 120 Million per annum in water purchases. 2. The Zednet monitoring system, rolled out to all SA operations, enables online remote monitoring and automated reporting of water consumption at more than 400 sites. The application of this system supported a 12% reduction in water purchased in 2020 compared to 2019, which translates to a cost saving of more than R 30 Million. 3. The water treatment plant at Ezulwini operations that enables complete independence of that operation enables cost savings of more than R 7 million per annum. We are also evaluating opportunities to utilise +/-200Ml of excess fissure water available at the SA gold ops, as part of regional closure solutions. Utilising this available water has the potential to reduce reliance on third-party suppliers and will free-up water for use by communities.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Medium-High

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
157000000

Explanation of financial impact
The financial impact of R 157 million includes the costs savings of R 120 million per annum in water purchases at Driefontein; the cost saving of more than R 30 million supported by the Zednet monitoring system and the cost saving of more than R 7 million per annum due to water treatment at Ezulwini.

Type of opportunity
Resilience

Primary water-related opportunity
Increased resilience to impacts of climate change

Company-specific description & strategy to realize opportunity

Why increased resilience to impacts of climate change is considered strategic for the company: This opportunity will assist Sibanye-Stillwater drive water independence, which has been identified as a material matter. In 2020, 47% of our total water usage at the South African (SA) operations was sourced from municipal and water boards (e.g. Rand Water Board and Sedibeng Water Board). This included grey water purchased from Rustenburg Water Services Trust, comprising 5% of the total usage at the SA operations. The opportunity remains to significantly reduce our dependence on these suppliers through minimising wasteful water use and leakage and to drive the water independence strategy across the SA operations. Independence from municipal water sources means that there is more water available for our doorstep communities. An explanation of the actions to realize the opportunity: To realise this water independence opportunity, we have the following two projects underway - 1. An extension to Driefontein’s water treatment facility is underway. The 5Ml/day treatment extension will see Driefontein almost completely independent from municipal water supply by Q4 2021. 2. The Kloof water treatment plant, which forms part of Phase 1 of the operation’s independence drive, will reduce the reliance of the Kloof operations on Rand Water Board. Continuous focus on leak reduction initiatives though smart metering, monitoring and reporting initiatives. An example of the strategy in action: 1. The 20 Ml/day potable water treatment plant that renders Driefontein more than 95% independent from municipal supply. This facility enables cost savings of more than R 120 Million per annum in water purchases. 2. The Zednet monitoring system, rolled out to all SA operations, enables online remote monitoring and automated reporting of water consumption at more than 400 sites. The application of this system supported a 12% reduction in water purchased in 2020 compared to 2019, which translates to a cost saving of more than R 30 Million. 3. The water treatment plant at Ezulwini operations that enables complete independence of that operation enables cost savings of more than R 7 million per annum. We are also evaluating opportunities to utilise +/-200Ml of excess fissure water available at the SA gold ops, as part of regional closure solutions. Utilising this available water has the potential to reduce reliance on third-party suppliers and will free-up water for use by communities.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Medium

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure – minimum (currency)
17500000

Potential financial impact figure – maximum (currency)
35000000
Explanation of financial impact

Sibanye-Stillwater’s market capitalisation is dependent on the continued support of shareholders. Increasing the resilience of our host communities to the impacts of climate change is important to maintaining our social licence to operate, which is an increasingly important measure of sustainable development that is considered by our shareholders. Therefore, this opportunity to increase the resilience to climate change impacts may increase the Group market capitalisation. The estimated financial impact range has therefore been calculated based on an estimate that increases of between 0.01% and 0.02% in the 2020 market capitalisation of ZAR 175 billion will equate to an estimated positive impact of approximately ZAR 17.5 million – ZAR 35 million.

W5. Facility-level water accounting

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number

Facility 1

Facility name (optional)

Marikana

Country/Area & River basin

<table>
<thead>
<tr>
<th>Country/Area</th>
<th>River basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Africa</td>
<td>Limpopo</td>
</tr>
</tbody>
</table>

Latitude

-25.685603

Longitude

27.521649

Located in area with water stress

Yes

Primary power generation source for your electricity generation at this facility

<Not Applicable>

Oil & gas sector business division

<Not Applicable>

Total water withdrawals at this facility (megaliters/year)

10725

Comparison of total withdrawals with previous reporting year

Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes

69

Withdrawals from brackish surface water/seawater

0

Withdrawals from groundwater - renewable

3378

Withdrawals from groundwater - non-renewable

0

Withdrawals from produced/entrained water

0

Withdrawals from third party sources

7278

Total water discharges at this facility (megaliters/year)

246

Comparison of total discharges with previous reporting year

Lower

Discharges to fresh surface water

246

Discharges to brackish surface water/seawater

0

Discharges to groundwater

0

Discharges to third party destinations

0

Total water consumption at this facility (megaliters/year)

10479
Comparison of total consumption with previous reporting year

Lower

Please explain

Marikana’s water withdrawals decreased by 11%, their discharges decreased by 19% and their consumption volumes decreased by 11%. Consumption volumes are calculated with the formula Consumption=Withdrawal – Discharge. Sibanye defines a change less than 10% as 'About the same', a change between 10% and 40% as 'Higher/lower' and a change greater than 40% as 'much higher/lower'. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 2

Facility name (optional)
Kroondal

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Limpopo</th>
</tr>
</thead>
</table>

Latitude
-25.72449

Longitude
27.30428

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
3425

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
1922

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
1503

Total water discharges at this facility (megaliters/year)
0

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
325

Comparison of total consumption with previous reporting year
About the same

Please explain

Kroondal’s water withdrawals increased by 0.01%, as in the previous year there were no discharges and their consumption volumes decreased by 0.0%. Consumption volumes are calculated with the formula Consumption=Withdrawal – Discharge. Sibanye defines a change less than 10% as 'About the same', a change between 10% and 40% as 'Higher/lower' and a change greater than 40% as 'much higher/lower'. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.
Facility reference number
Facility 3

Facility name (optional)
RPM

Country/Area & River basin
South Africa Limpopo

Latitude
-25.679776

Longitude
27.30501

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
9147

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
2994

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
6153

Total water discharges at this facility (megaliters/year)
0

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
9147

Comparison of total consumption with previous reporting year
About the same

Please explain
RPM's water withdrawals increased by 4%, as in the previous year discharges remained at zero and their consumption volumes increased by 4%. Consumption volumes are calculated with the formula Consumption = Withdrawal – Discharge. Sibanye defines a change less than 10% as 'About the same', a change between 10% and 40% as 'Higher/lower' and a change greater than 40% as 'much higher/lower'. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 4

Facility name (optional)
Beatrix

Country/Area & River basin
South Africa Orange
Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
10263

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
8084

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
2179

Total water discharges at this facility (megaliters/year)
999

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
999

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
9264

Comparison of total consumption with previous reporting year
About the same

Please explain
Beatrix’s water withdrawals decreased by 4%, their discharges decreased by 5% and their consumption volumes decreased by 4%. Consumption volumes are calculated with the formula Consumption = Withdrawal – Discharge. Sibanye defines a change less than 10% as ‘About the same’, a change between 10% and 40% as ‘Higher/lower’ and a change greater than 40% as ‘much higher/lower’. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.
Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
11781

Comparison of total withdrawals with previous reporting year
Lower

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
10818

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
963

Total water discharges at this facility (megaliters/year)
10077

Comparison of total discharges with previous reporting year
Lower

Discharges to fresh surface water
10077

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
1704

Comparison of total consumption with previous reporting year
Lower

Please explain
Cooke's water withdrawals decreased by 14%, their discharges decreased by 12% and their consumption volumes decreased by 23%. Consumption volumes are calculated with the formula Consumption=Withdrawal – Discharge. Sibanye defines a change less than 10% as 'About the same', a change between 10% and 40% as 'Higher/lower' and a change greater than 40% as 'much higher/lower'. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 6

Facility name (optional)
Driefontein

Country/Area & River basin

<table>
<thead>
<tr>
<th>South Africa</th>
<th>Orange</th>
</tr>
</thead>
</table>

Latitude
-26.387645

Longitude
27.49445

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
28516

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
28173

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
343

Total water discharges at this facility (megaliters/year)
20911

Comparison of total discharges with previous reporting year
About the same

Discharges to fresh surface water
20911

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
7605

Comparison of total consumption with previous reporting year
Lower

Please explain
Driefontein's water withdrawals decreased by 3%, their discharges increased by 5% and their consumption volumes decreased by 19%. Consumption volumes are calculated with the formula Consumption = Withdrawal – Discharge. Sibanye defines a change less than 10% as 'About the same', a change between 10% and 40% as 'Higher/lower' and a change greater than 40% as 'much higher/lower'. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 7

Facility name (optional)
Cooke_Ezulwini

Country/Area & River basin
South Africa

Latitude
-26.35542

Longitude
27.711957

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
24095

Comparison of total withdrawals with previous reporting year
About the same

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
24051

Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
44
Total water discharges at this facility (megaliters/year)
22571
Comparison of total discharges with previous reporting year
About the same
Discharges to fresh surface water
22571
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
1524
Comparison of total consumption with previous reporting year
Lower

Please explain
The Ezulwini Operation's water withdrawals decreased by 3%, their discharges decreased by 2% and their consumption volumes decreased by 14%. Consumption volumes are calculated with the formula Consumption = Withdrawal – Discharge. Sibanye defines a change less than 10% as 'About the same', a change between 10% and 40% as 'Higher/lower' and a change greater than 40% as 'much higher/lower'. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 8
Facility name (optional)
Kloof
Country/Area & River basin
South Africa Orange

Latitude
-26.390355
Longitude
26.597354
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
23811
Comparison of total withdrawals with previous reporting year
About the same
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
19774
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
4037
Total water discharges at this facility (megaliters/year)
18825
Comparison of total discharges with previous reporting year
Higher
Discharges to fresh surface water
18825
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
4986
Comparison of total consumption with previous reporting year
Lower

Please explain
Kloof's water withdrawals increased by 7%, their discharges increased by 21% and their consumption volumes decreased by 25%. Consumption volumes are calculated with the formula Consumption = Withdrawal – Discharge. Sibanye defines a change less than 10% as ‘About the same’, a change between 10% and 40% as ‘Higher/lower’ and a change greater than 40% as ‘much higher/lower’. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 9
Facility name (optional)
Stillwater
Country/Area & River basin
United States of America Mississippi River
Latitude
45.389303
Longitude
-109.874989
Located in area with water stress
Yes
Primary power generation source for your electricity generation at this facility
<Not Applicable>
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
2819
Comparison of total withdrawals with previous reporting year
This is our first year of measurement
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
2819
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
3027
Comparison of total discharges with previous reporting year
This is our first year of measurement
Discharges to fresh surface water
0
Discharges to brackish surface water/seawater
0
Discharges to groundwater
3027
Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
86

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
A comparison with previous year’s volumes cannot be provided for this operation. Our consumption figures do not balance according to the CDP definition of Consumption = Withdrawals - Discharge. This is due to the accounting of water consumption at our US operations. At the US operations, water consumption is defined as water added to concentrator plus potable water purchased. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 10

Facility name (optional)
East Boulder

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude
45.504744

Longitude
-110.086756

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
499

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
499

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
490

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
490

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
133

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
A comparison with previous year’s volumes cannot be provided for this operation. Our consumption figures do not balance according to the CDP definition of Consumption = Withdrawals - Discharge.
Withdrawals - Discharge. This is due to the accounting of water consumption at our US operations. At the US operations, water consumption is defined as water added to concentrator plus potable water purchased. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.

Facility reference number
Facility 11

Facility name (optional)
Metallurgical Complex

Country/Area & River basin

<table>
<thead>
<tr>
<th>United States of America</th>
<th>Mississippi River</th>
</tr>
</thead>
</table>

Latitude
45.611431

Longitude
-109.234889

Located in area with water stress
Yes

Primary power generation source for your electricity generation at this facility
<Not Applicable>

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
140

Comparison of total withdrawals with previous reporting year
This is our first year of measurement

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
0

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
140

Total water discharges at this facility (megaliters/year)
0

Comparison of total discharges with previous reporting year
This is our first year of measurement

Discharges to fresh surface water
0

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
96

Comparison of total consumption with previous reporting year
This is our first year of measurement

Please explain
A comparison with previous year’s volumes cannot be provided for this operation. Our consumption figures do not balance according to the CDP definition of Consumption = Withdrawals - Discharge. This is due to the accounting of water consumption at our US operations. At the US operations, water consumption is defined as water added to concentrator plus potable water purchased. The WRI Aqueduct Tool was used to determine whether this operation is located in a water stressed area.
(W5.1a) For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?

<table>
<thead>
<tr>
<th>Water withdrawals – total volumes</th>
<th>% verified</th>
<th>76-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td>Total water withdrawal volumes were externally verified with limited assurance. The volumes were verified according to the revised ISAE 3000 standard.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water withdrawals – volume by source</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water withdrawals – quality</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water discharges – total volumes</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water discharges – volume by destination</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water discharges – volume by treatment method</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water discharge quality – quality by standard effluent parameters</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water discharge quality – temperature</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water consumption – total volume</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water recycled/reused</th>
<th>% verified</th>
<th>Not verified</th>
</tr>
</thead>
<tbody>
<tr>
<td>What standard and methodology was used?</td>
<td></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

W6. Governance

W6.1
(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available.

(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>Rationale: Due to our reliance on water to operate, water availability & water quality considerations are incorporated company-wide into the Group’s water policy to manage water demand & planning processes at every stage of the mines’ life cycles. Policy content: We have an integrated ESG Policy which incorporates our water policy & objectives. We have also published various water related position statements, which further articulate & support the water principle in the integrated ESG Policy. The policy highlights that ESG issues are interlinked & must be managed as such. Key water policies, e.g. sustainable water use, social awareness, ecosystem resilience, re-use & recycling initiatives, consideration of climate change, are referenced. The policy recognises that access to water is a right, integral to wellbeing & livelihoods. We further recognise that freshwater resources are under pressure from industrialisation & climate change. Our ESG policy highlights that we are operating in medium to high water stress regions & our operations are dependent on water to support safe production & for consumption & sanitation purposes. Our ESG Policy clearly lays out the impact we have on water, which is recognised as a shared resource. We have conducted intensive work to understand the water challenges of the regions we operate in & work continuously towards the sustainable management of water resources in areas where we operate. Our ESG Policy further outlines our strategic initiatives, which are linked to targets on water conservation & water demand management. Our Water Health & WCWDM/Water Stewardship Position Statement, respectively supports the policy in stating that innovation & scientifically defensible strategies are needed to effectively manage water health & promote water stewardship within the organisation. We consider our social & environmental commitments in line with frameworks, standards, & guidelines such as the UNGC principles, SDGs, WG, Responsible Gold Mining Principles RGMPs & the TCFD. These commitments, stakeholder engagements & reporting on initiatives demonstrate our water commitments beyond regulatory compliance. Our policy considers improving awareness & education. Stewardship on environmental issues forms part of our programmes & initiatives. We also commit to ensure that our employees have access to clean water, sanitation & hygiene (WASH). Through the support of government initiatives, this commitment extends to improving community WASH.</td>
</tr>
<tr>
<td>Description of business impact on water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference to international standards and widely-recognized water initiatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company water targets and goals</td>
<td>Commitment to align with public policy initiatives, such as the SDGs</td>
<td></td>
</tr>
<tr>
<td>Commitments beyond regulatory compliance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commitment to water-related innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commitment to stakeholder awareness and education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commitment to water stewardship and/or collective action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commitment to safely managed Water, Sanitation and Hygiene (WASH) in the workplace</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commitment to safely managed Water, Sanitation and Hygiene (WASH) in local communities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acknowledgement of the human right to water and sanitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recognition of environmental linkages, for example, due to climate change</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?
Yes.

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board-level committee</td>
<td>At Sibanye-Stillwater, water-related issues are the responsibility of the Social, Ethics and Sustainability Committee and the Risk Committee. Both provide strategic direction and oversight to ensure that the water strategy and policy are implemented effectively. They are responsible for addressing water-related risks and opportunities associated with e.g. strategic sourcing of water, water security, costs, availability, consumption and water independence. Recommendations are passed onto the Board for final decision-making. For example, recommended by the Social, Ethics and Sustainability Committee, we have embarked on a strategy to drive water secureable, water independence from mains, due to risks (SA operations) to reduce our impact on water resources, while being mindful of biodiversity value and social welfare. Following the Board Risk Committee’s recommendation, the decision was made to include climate change (containing water-related risks) as part of Sibanye’s material risks.</td>
</tr>
</tbody>
</table>
(W6.2b) Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency that water-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which water-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled - all meetings</td>
<td>Monitoring implementation and performance</td>
<td>The Board is responsible for evaluating, determining and ensuring the implementation of corporate strategy and policy, which includes its integrated Environmental, Social and Governance policy that contains the Group’s water policy and relevant water-related issues. The Board defines the strategic policy intent and objectives of the Company as a business enterprise as well as its values and approves the mission, vision and strategy of the company. The Board satisfies itself that the strategy and business plans do not give rise to risks that have not been thoroughly assessed by management and considers sustainability as a business opportunity that guides strategy formulation. The Group’s strategy is consistent with integrated thinking, which links different capitals and ensures sustainable outcomes. Notably, the ‘Natural Capital’ resource incorporates water-related matters, which are thus considered at the highest levels of the organisation. Accordingly, the Board participates in an annual strategy session, in which the Group’s strategy, assessed risks and opportunities are deliberated. Progress of implemented strategies are also considered, to ensure alignment with Group values with a view to ensuring the long-term success and sustainability of the Group. The Social, Ethics and Sustainability Committee, a Board-level committee, assists the Board in monitoring the fulfilment of this mandate. It is a statutory committee which assists the Board in guiding and monitoring the Group’s performance in relation to corporate citizenship, environmental, social and governance factors, the Sustainable Development Goals as well as sustainability and ethics matters, which include water-related issues. The Committee meets on a quarterly basis and reports directly to the Board of Directors. The quarterly Social and Ethics Report to the Board includes, amongst others, water risks and opportunities affecting the company, major water-related management plans and performance on objectives and targets.</td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding major plans of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding strategy</td>
<td></td>
</tr>
</tbody>
</table>

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)

Chief Executive Officer (CEO)

Responsibility

Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues

Quarterly

Please explain

Position in corporate structure: The CEO, positioned below Board-level, provides leadership in the area of policy and strategic direction and provides management with comprehensive information, analysis and timely advice on all aspects of the business. The CEO carries the highest-level management position with responsibility for water-related issues for the Group. Nature of reports to board: The water-related matters identified at operational and Group level are reported on a quarterly basis to the Board for consideration. Water-related responsibilities: Our CEO provides leadership in the area of policy and strategic direction, providing the Board with comprehensive information, analysis and advice on all business aspects, including water-related issues. Specifically, supported by the Chief Technical Officer, the Senior Vice President: Sustainability and the SVP: Environment, the CEO makes key decisions by ensuring that strategic water objectives translate into operational targets.

(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>This forms part of the overall incentive scheme for the company, and is linked to our performance management system. Performance assessments are held annually. Sibanye-Stillwater has approved water targets as per the group-wide long-term incentive plan. Water conservation and demand management is a component (strategic thrust) of the long-term environmental incentive. Performance against this long-term incentive will be reported on in the following year’s CDP water response.</td>
</tr>
</tbody>
</table>

(W6.4a)
W6.4a What incentives are provided to C-suite employees or board members for the management of water-related issues (do not include the names of individuals)?

<table>
<thead>
<tr>
<th>Role(s) entitled to incentive</th>
<th>Performance indicator</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monetary reward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board/Executive board</td>
<td>Reducing water</td>
<td>Details on indicator chosen and rationale Our Board of Directors is monetarily rewarded to achieve the Group's strategic objectives such as ESG priorities, which form part of the performance conditions applicable to Short Term Incentive (STI) and Long Term Incentive (LTI) awards. Our incentive system supports the associated change in leadership behaviour which is required for value-based decision making. Specific performance indicators: • Reduce withdrawals of purchased water: annual target of 2.5% (platinum) and 7% (gold) reductions to manage our risk of water restrictions by utilities • Reduce consumption volumes: annual target of total consumption per tonne processed. Reducing the amount of water we use ensures that we reduce our impact on freshwater resources, and in turn, reduce the pressure on ecosystems and communities we operate in • Improvements in efficiency - direct operations Other, please specify (Behaviour change)</td>
</tr>
<tr>
<td>Corporate executive team</td>
<td>Reduction in water</td>
<td></td>
</tr>
<tr>
<td></td>
<td>withdrawals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction in consumption volumes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvements in efficiency - direct operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other, please specify</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Behaviour change)</td>
<td></td>
</tr>
</tbody>
</table>

Non-monetary reward

<table>
<thead>
<tr>
<th>No one is entitled to these incentives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><Not Applicable></td>
<td>Not applicable to Sibanye-Stillwater.</td>
</tr>
</tbody>
</table>

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

Yes, direct engagement with policy makers

Yes, trade associations

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

Process to ensure consistency:

The Social, Ethics and Sustainability Committee, a Board committee, provides oversight of climate change response and strategy across the Group and reports to the Board. All policy engagement processes are reviewed at board meetings. We engage on climate change and water policy through trade associations such as International Council on Mining and Metals (ICMM). In addition, Sibanye-Stillwater is represented on the Minerals Council South Africa which acts as a principal advocate for mining in South Africa to government, communicating major policies endorsed by its members and/or to influence emerging policy and regulation.

Consistency across the Group is achieved by making our CEO responsible for the Group strategy and provision of executive direction. Our ESG Policy integrates our water policy and objectives, which are supported by the various water and biodiversity policy and position statements, endorsed by the CEO.

Cumulative internal reporting on material matters also form part of our process to ensure that all of our direct and indirect activities seeking to influence policy are consistent with our water policy and our water commitments. In addition, we have implemented an integrated stakeholder management system for meaningful stakeholder engagement on environmental matters.

If inconsistency is detected:

Should any inconsistencies arise, they are immediately addressed at management level and communicated with the Board.

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

W7. Business strategy

W7.1
(W7.1) Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Water issues integrated into our long-term business objectives and examples of integration: - The reduction of water loss is integrated through the implementation of effective monitoring regimes, e.g. Zednet automated monitoring system (SA) - The reduction of water use and conserving water sources are integrated through water reduction targets (7.5% and 2.5% reduced potable water targets by the gold and PGM operations respectively) - Sustainable water consumption is integrated through efficiency measures e.g. optimisation and implementation of water treatment plants - Enhancing water security in our communities and supply chain is integrated by stakeholder engagements to promote responsible HCM - Minimising the impact of operations on water resources is integrated through water conservation and efficiency programmes - Environmental consciousness integrated through awareness, stewardship and communication on environmental issues. Why the decisions were taken: The decision to integrate the above water-related issues into our business objectives is to ensure that we have reliable water supplies for our operations, which are dependent on water to support safe production and for consumption and sanitation purposes. Our SA operations are especially impacted by water scarcity, thus we need to avoid increasing the risk of water restrictions, higher water costs and non-compliance with water quality compliance which may result in regional mine production constraints or mine closures.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Water issues integrated into long-term strategy for responsible stewardship and water security: - Sustainable use and sourcing of water resources through conservation and efficient and effective management programmes and initiatives - Responsible use of environmental resources to maintain our environmental licence to operate - Encourage sound management of water systems - Reduce water resources impacts - Drive environmental consciousness through awareness, stewardship and communication on environmental issues. Example of how the water-related issues are integrated into long-term Group strategy: Sibanye-Stillwater’s long-term strategy in the US PGM operations is centred around our Good Neighbor Agreement (GNA), a partnership with three local stakeholder organisations: the Northern Plains Resource Council, the Stillwater Protective Association and the Cottonwood Resource Council. The GNA provides for the protection of the natural environment, including water, while discouraging responsible economic development. The GNA’s adaptive management plan (AMP) was finalised and implemented in 2020. The AMP is a tiered-response plan that creates triggers for water-quality reporting and action to levels below state or federal limits. Why the decisions were taken: As water is a key element without which we cannot operate, we need to ensure that we maintain our environmental license to operate.</td>
</tr>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Water issues integrated into long-run financial planning: - Mine rehabilitation and closure, including specialist projects such as construction of wetlands and waste - Understanding latent and residual water-related liabilities, current and post-closure - Investments into innovation processes and innovative technologies for water resource management (in line with SDG 9) - Integrated catchment management - Storm water management - Water conservation, demand management, efficiency and operating costs: - Ring-fencing of total water and associated costs, understanding treatment costs for different types of waters and additional surcharges where applicable to better inform water-related financial planning and budgeting processes. Examples of how water-related issues are integrated: Long-term planning extends to post-mine life. Approved plans have budget allocations. Identifying financial requirements related to water management assists us allocate resources and mitigate or avoid non-compliance risks. E.g. rehabilitation of wetlands in surrounding impacted catchments and constructed wetlands are key component of mine-closure solutions. In addition, surface and groundwater are critical to our operations and must be managed. Understanding water-related issues into our business objectives is to ensure that we have reliable water supplies for our operations, which are dependent on water to support safe production and for consumption and sanitation purposes. Our SA operations are especially impacted by water scarcity, thus we need to avoid increasing the risk of water restrictions, higher water costs and non-compliance with water quality compliance which may result in regional mine production constraints or mine closures.</td>
</tr>
</tbody>
</table>

(W7.2) What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

Row 1

Water-related CAPEX (+/- % change)

300

Anticipated forward trend for CAPEX (+/- % change)

300

Water-related OPEX (+/- % change)

-10

Anticipated forward trend for OPEX (+/- % change)

-10

Please explain

Explanation of change: Capex increased from the previous year due to increased water infrastructure projects. Description of what the water-related expenditures: Capital expenditure related to monitoring and metering of water resources amounted to an estimated value of R 3 Million in 2019. 2020 operational expenditure related to implementation of Water Conservation and Water Demand Management initiatives was more than R 9 Million. Explanation of change: OpeX increased from the previous year due to increased water management and maintenance projects. The implementation of the initiatives enables reductions in overall operational costs, particularly related to purchased water. These costs are expected to decrease in 2021.

(W7.3) Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Yes</td>
</tr>
</tbody>
</table>

In 2019, Sibanye Stillwater conducted a Task Force on Climate-related Financial Disclosures (TCFD) scenario analysis. The most significant risks identified were amongst others changes in precipitation extremes and droughts in South Africa, which have the potential to impact surface infrastructure as well as underground mining operations, and drought-induced forest fires and flooding due to extreme precipitation or snowpack at our US operations. The TCFD study is currently being repeated for the 2021 year.

(W7.3a) Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes
(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization’s response?

<table>
<thead>
<tr>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Other, please specify (RCP 4.5)</td>
<td>Sibanye-Stillwater makes use of the WR1’s BETA Aqueduct Water Risk Atlas, which uses three scenarios to display future water risks (e.g. water stress, water supply). The “optimistic” scenario relates to the SSP2 RCP 4.5 scenario, the “business as usual” to the SSP2 RCP 8.5 and the “pessimistic” scenario represents the SSP3 RCP 8.5 scenario. Description of water-related outcomes associated with the RCP4.5 scenario: Western parts of Montana to experience extreme water stress by 2030 + Medium to high water stress for our Southern African operations, especially evident at our SA PGGM operations where the Rustenburg, Kroondal and Marikana will experience increased stress on ground and surface-water sources. The physical risks associated with the projected dramatic changes in the climate could have detrimental impacts on our ability to operate. E.g., operations may have disruptions to power and/or water supply, equipment could fail, shafts could flood, and workers may be unable to get to work or other interruptions in the supply chains. In addition, we would need to manage the risks associated with the pumping of surplus water, treating the water, and discharging water into pristine environments. Response to the water-related outcomes: The result of the analysis of water stress in line with RCP4.5 is the identification of a material risk to the availability of water to the South African operations that require proactive management to ensure availability (or security of supply) to our operations. In response to this analysis, we have identified water-related risks and opportunities as material influences in our external operating environment and are assessing, re-evaluating and managing these continuously. In addition, the water-related outcomes form part of our ESG policy, our water conservation and water demand management (WCWDM), water health and our climate change position statements which set out how we manage water as a resource holistically and in an integrated manner across the Group. In line with identified water-related risks and opportunities and our approach to water health, demand and conservation, we have implemented a number of operational mitigation measures including, among others, actions to reduce water reliance from external suppliers and the development and responsible execution of WCWDM plans, based on predictive modelling. We are also investigating an internal water price as part of our Water Resource assessments, that will consider externalities such as other costs or water risks. Timescale: We are aiming to achieve our responses to manage the identified future water stress risk is the long-term (11-15 years).</td>
<td></td>
</tr>
</tbody>
</table>

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, but we are currently exploring water valuation practices

Please explain

We have identified our impact on water sources, our dependence on the resource and the water scarcity risk in the regions we operate in. We have also largely ring-fenced our operational water costs including water purchases, water treatment and other surcharges. An additional step as part of our responsible water conservation and water demand management will be to determine an internal price on water. We are in the process of classifying water as a resource to our business and are planning to build risks and other costs, e.g. water externalities, into an internal price on water. Purchased potable water costs +/-R 14.50/kl. This varies between +/-R 14/kl - R 32/kl depending on the location and type of water. To pump and treat excess water costs us up to R 10/kl. To treat water to potable standard cost us between R 3/kl and R9/kl depending on the feed water quality and the technology used for treatment. The financing model of the respective facilities plays a role in the cost.

W8. Targets

W8.1

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1 Business level specific targets and/or goals</td>
<td>Targets are monitored at the corporate level</td>
<td>Sibanye is committed to the responsible use and management of water. As part of this commitment, water related targets have been set at the South African operations. Separate targets have been set for the Gold and PGM operations. Sibanye-Stillwater has published a Water Conservation and Water Demand Management/Water Stewardship position statement which sets out the group’s approach to Water Conservation and Water Demand Management. Water related targets are set and monitored according to the strategy outlined in the position statement. Sibanye sets annual targets for the reduction of potable water purchases in line with our position statement’s objective of improving water security and independence. The water volumes related to the targets are monitored using automated monitoring systems such as the Zednet system which is installed at the South African operations. This enables the monitoring of the annual water targets.</td>
</tr>
</tbody>
</table>

W8.1a
(W8.1a) Provide details of your water targets that are monitored at the corporate level, and the progress made.

Target reference number
Target 1

Category of target
Water withdrawals

Level
Business

Primary motivation
Water stewardship

Description of target
In order to improve our water security at our South African gold operations, we have set a target to reduce our purchased potable withdrawals by 7.5% in 2020 with a base year of 2019. This target is aimed at reducing our reliance on third party water suppliers and showing responsible water stewardship. This target specifically relates to our gold business in South Africa.

Quantitative metric
% reduction of water withdrawals from municipal supply

Baseline year
2019

Start year
2019

Target year
2020

% of target achieved
100

Please explain
This target relates to the purchased potable water at our South African gold operations. These withdrawals reduced by 13% in the reporting year. Therefore, this target has been achieved.

Target reference number
Target 2

Category of target
Water withdrawals

Level
Business

Primary motivation
Water stewardship

Description of target
In order to improve our water security at our South African PGM operations, we have set a target to reduce our purchased potable withdrawals by 2.5% in 2020 with a base year of 2019. This target is aimed at reducing our reliance on third party water suppliers and showing responsible water stewardship. This target specifically relates to our PGM business in South Africa.

Quantitative metric
% reduction of water withdrawals from municipal supply

Baseline year
2019

Start year
2019

Target year
2020

% of target achieved
100

Please explain
This target relates to the purchased potable water at our South African gold operations. These withdrawals reduced by 11% in the reporting year. Therefore, this target has been achieved.
(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

Goal
Other, please specify (Reduction in level 3 environmental incidents)

Level
Company-wide

Motivation
Water stewardship

Description of goal
Sibanye-Stillwater classifies and reports on all environmental incidents that occur. As part of our goals for responsible water stewardship we have set a goal for a 10% Year on year decrease in Level 3 environmental incidents.

Baseline year
2019

Start year
2019

End year
2020

Progress
We did not meet our goal of reducing Level 3 incidents by 10% in 2020 when compared to 2019. We recorded one level 3 incident at our US operations, two incidents at our South African PGM operations and two incidents at our South African Gold operations.

W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?
Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2 Business impacts</td>
<td>The number of environmental incidents, Level 3 and above, has been assured.</td>
<td>ASAE3000</td>
<td>This data point has been verified as it provides important information on Sibanye-Stillwater's environmental and social impacts.</td>
</tr>
</tbody>
</table>

W10. Sign off

W-FI

(W-FI) Use this field to provide any additional information or context that you feel is relevant to your organization's response. Please note that this field is optional and is not scored.

W10.1

(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Sibanye-Stillwater's Chief Financial Officer is responsible for sign-off of the CDP water response, in conjunction with the Chief Technical Officer.</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate's Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

No
Submit your response

In which language are you submitting your response?
English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investors</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below
I have read and accept the applicable Terms